253 resultados para Silurian-devonian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with the historical survey of the class for the Devonian layers, general characteristics of the group and taphonomic preservation standards associated with the group. It was analyzed specimens of scientific collections from brazilian museums and universities. The taxonomic group is represented by four genera in the basins of Parana, Parnaiba and Amazon: Tentaculites, Homoctenus, Styliolina and Volynites. The tentaculitids occur from Ordovician to the Devonian, having its peak in the Middle Devonian. The class has three known orders: Tentaculitida, animals of benthic habit, Homoctenida and Dacryoconarida, animals of habit planktonic. It was also noticed the presence of two patterns of taphonomic conservation: isolated and grouped specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-pressure/high-temperature (LP/HT) metamorphic belts are characterised by rocks that experienced abnormal heat flow in shallow crustal levels (T > 600 °C; P < 4 kbar) resulting in anomalous geothermal gradients (60-150 °C/km). The abnormal amount of heat has been related to crustal underplating of mantle-derived basic magmas or to thermal perturbation linked to intrusion of large volumes of granitoids in the intermediate crust. In particular, in this latter context, magmatic or aqueous fluids are able to transport relevant amounts of heat by advection, thus favouring regional LP/HT metamorphism. However, the thermal perturbation consequent to heat released by cooling magmas is responsible also for contact metamorphic effects. A first problem is that time and space relationships between regional LP/HT metamorphism and contact metamorphism are usually unclear. A second problem is related to the high temperature conditions reached at different crustal levels. These, in some cases, can completely erase the previous metamorphic history. Notwithstanding this problem is very marked in lower crustal levels, petrologic and geochronologic studies usually concentrate in these attractive portions of the crust. However, only in the intermediate/upper-crustal levels of a LP/HT metamorphic belt the tectono-metamorphic events preceding the temperature peak, usually not preserved in the lower crustal portions, can be readily unravelled. The Hercynian Orogen of Western Europe is a well-documented example of a continental collision zone with widespread LP/HT metamorphism, intense crustal anatexis and granite magmatism. Owing to the exposure of a nearly continuous cross-section of the Hercynian continental crust, the Sila massif (northern Calabria) represents a favourable area to understand large-scale relationships between granitoids and LP/HT metamorphic rocks, and to discriminate regional LP/HT metamorphic events from contact metamorphic effects. Granulite-facies rocks of the lower crust and greenschist- to amphibolite-facies rocks of the intermediate-upper crust are separated by granitoids emplaced into the intermediate level during the late stages of the Hercynian orogeny. Up to now, advanced petrologic studies have been focused mostly in understanding P-T evolution of deeper crustal levels and magmatic bodies, whereas the metamorphic history of the shallower crustal levels is poorly constrained. The Hercynian upper crust exposed in Sila has been subdivided in two different metamorphic complexes by previous authors: the low- to very low-grade Bocchigliero complex and the greenschist- to amphibolite-facies Mandatoriccio complex. The latter contains favourable mineral assemblages in order to unravel the tectono-metamorphic evolution of the Hercynian upper crust. The Mandatoriccio complex consists mainly of metapelites, meta-arenites, acid metavolcanites and metabasites with rare intercalations of marbles and orthogneisses. Siliciclastic metasediments show a static porphyroblastic growth mainly of biotite, garnet, andalusite, staurolite and muscovite, whereas cordierite and fibrolite are less common. U-Pb ages and internal features of zircons suggest that the protoliths of the Mandatoriccio complex formed in a sedimentary basin filled by Cambrian to Silurian magmatic products as well as by siliciclastic sediments derived from older igneous and metamorphic rocks. In some localities, metamorphic rocks are injected by numerous aplite/pegmatite veins. Small granite bodies are also present and are always associated to spotted schists with large porphyroblasts. They occur along a NW-SE trending transcurrent cataclastic fault zone, which represents the tectonic contact between the Bocchigliero and the Mandatoriccio complexes. This cataclastic fault zone shows evidence of activity at least from middle-Miocene to Recent, indicating that brittle deformation post-dated the Hercynian orogeny. P-T pseudosections show that micaschists and paragneisses of the Mandatoriccio complex followed a clockwise P-T path characterised by four main prograde phases: thickening, peak-pressure condition, decompression and peak-temperature condition. During the thickening phase, garnet blastesis started up with spessartine-rich syntectonic core developed within micaschists and paragneisses. Coevally (340 ± 9.6 Ma), mafic sills and dykes injected the upper crustal volcaniclastic sedimentary sequence of the Mandatoriccio complex. After reaching the peak-pressure condition (≈4 kbar), the upper crust experienced a period of deformation quiescence marked by the static overgrowths of S2 by Almandine-rich-garnet rims and by porphyroblasts of biotite and staurolite. Probably, this metamorphic phase is related to isotherms relaxation after the thickening episode recorder by the Rb/Sr isotopic system (326 ± 6 Ma isochron age). The post-collisional period was mainly characterised by decompression with increasing temperature. This stage is documented by the andalusite+biotite coronas overgrown on staurolite porphyroblasts and represents a critical point of the metamorphic history, since metamorphic rocks begin to record a significant thermal perturbation. Peak-temperature conditions (≈620 °C) were reached at the end of this stage. They are well constrained by some reaction textures and mineral assemblages observed almost exclusively within paragneisses. The later appearance of fibrolitic sillimanite documents a small excursion of the P-T path across the And-Sil boundary due to the heating. Stephanian U-Pb ages of monazite crystals from the paragneiss, can be related to this heating phase. Similar monazite U-Pb ages from the micaschist combined with the lack of fibrolitic sillimanite suggest that, during the same thermal perturbation, micaschists recorded temperatures slightly lower than those reached by paragneisses. The metamorphic history ended with the crystallisation of cordierite mainly at the expense of andalusite. Consequently, the Ms+Bt+St+And+Sill+Crd mineral assemblage observed in the paragneisses is the result of a polyphasic evolution and is characterised by the metastable persistence of the staurolite in the stability fields of the cordierite. Geologic, geochronologic and petrographic data suggest that the thermal peak recorded by the intermediate/upper crust could be strictly connected with the emplacement of large amounts of granitoid magmas in the middle crust. Probably, the lithospheric extension in the relatively heated crust favoured ascent and emplacement of granitoids and further exhumation of metamorphic rocks. After a comparison among the tectono-metamorphic evolutions of the different Hercynian crustal levels exposed in Sila, it is concluded that the intermediate/upper crustal level offers the possibility to reconstruct a more detailed tectono-metamorphic history. The P-T paths proposed for the lower crustal levels probably underestimate the amount of the decompression. Apart from these considerations, the comparative analysis indicates that P-T paths at various crustal levels in the Sila cross section are well compatible with a unique geologic scenario, characterized by post-collisional extensional tectonics and magmas ascent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ziel der vorliegenden Dissertation war die Untersuchung der Liefergebiete und Ablagerungsräume sedimentärer Gesteine aus ausgewählten Gebieten der inneren Helleniden Griechenlands. Die untersuchten Sedimente Nordgriechenlands gehören zu den Pirgadikia und Vertiskos Einheiten des Serbo-Makedonische Massifs, zu den Examili, Melissochori und Prinochori Formationen der östlichen Vardar Zone und zur Makri Einheit und Melia Formation des östlichen Zirkum-Rhodope-Gürtels in Thrakien. In der östlichen Ägäis lag der Schwerpunkt bei den Sedimenten der Insel Chios. Der Metamorphosegrad der untersuchten Gesteine variiert von der untersten Grünschieferfazies bis hin zur Amphibolitfazies. Das stratigraphische Alter reicht vom Ordovizium bis zur Kreide. Zur Charakterisierung der Gesteine und ihrer Liefgebiete wurden Haupt- und Spurenelementgehalte der Gesamtgesteine bestimmt, mineralchemische Analysen durchgeführt und detritische Zirkone mit U–Pb datiert. An ausgewählten Proben wurden außerdem biostratigraphische Untersuchungen zur Bestimmung des Sedimentationsalters durchgeführt. Die Untersuchungsergebnisse dieser Arbeit sind von großer Bedeutung für paläogeographische Rekonstruktionen der Tethys. Die wichtigsten Ergebnisse lassen sich wie folgt zusammenfassen: Die ältesten Sedimente Nordgriechenlands gehören zur Pirgadikia Einheit des Serbo-Makedonischen Massifs. Es sind sehr reife, quarzreiche, siliziklastische Metasedimente, die auf Grund ihrer Maturität und ihrer detritischen Zirkone mit ordovizischen overlap-Sequenzen vom Nordrand Gondwanas korreliert werden können. Die Metasedimente der Vertiskos Einheit besitzen ein ähnliches stratigraphisches Alter, haben aber einen anderen Ablagerungsraum. Das Altersspektrum detritischer Zirkone lässt auf ein Liefergebiet im Raum NW Afrikas (Hun Superterrane) schließen. Die Gesteinsassoziation der Vertiskos Einheit wird als Teil einer aktiven Kontinentalrandabfolge gesehen. Die ältesten biostratigraphisch datierten Sedimente Griechenlands sind silurische bis karbonische Olistolithe aus einer spätpaläozoischen Turbidit-Olistostrom Einheit auf der Insel Chios. Die Alter detritischer Zirkone und die Liefergebietsanalyse der fossilführenden Olistolithe lassen den Schluss zu, dass die klastischen Sedimente von Chios Material vom Sakarya Mikrokontinent in der West-Türkei und faziellen Äquivalenten zu paläozoischen Gesteinen der Istanbul Zone in der Nord-Türkei und der Balkan Region erhalten haben. Während der Permotrias wurde die Examili Formation der östlichen Vardar Zone in einem intrakontinentalen, sedimentären Becken, nahe der Vertiskos Einheit abgelagert. Untergeordnet wurde auch karbonisches Grundgebirgsmaterial eingetragen. Im frühen bis mittleren Jura wurde die Melissochori Formation der östlichen Vardar Zone am Abhang eines karbonatführenden Kontinentalrandes abgelagert. Der Großteil des detritischen Materials kam von permokarbonischem Grundgebirge vulkanischen Ursprungs, vermutlich von der Pelagonischen Zone und/oder der unteren tektonischen Einheit des Rhodope Massifs. Die Makri Einheit in Thrakien besitzt vermutlich ein ähnliches Alter wie die Melissochori Formation. Beide sedimentären Abfolgen ähneln sich sehr. Der Großteil des detritischen Materials für die Makri Einheit kam vom Grundgebirge der Pelagonischen Zone oder äquivalenten Gesteinen. Während der frühen Kreide wurde die Prinochori Formation der östlichen Vardar Zone im Vorfeld eines heterogenen Deckenstapels abgelagert, der ophiolitisches Material sowie Grundgebirge ähnlich zu dem der Vertiskos Einheit enthielt. Ebenfalls während der Kreidezeit wurde in Thrakien, vermutlich im Vorfeld eines metamorphen Deckenstapels mit Affinitäten zum Grundgebirge der Rhodopen die Melia Formation abgelagert. Zusammenfassend kann festgehalten werden, dass die Subduktion eines Teiles der Paläotethys und die anschließende Akkretion vom Nordrand Gondwanas stammender Mikrokontinente (Terranes) nahe dem südlichen aktiven Kontinentalrand Eurasiens den geodynamischen Rahmen für die Schüttung des detritischen Materials der Sedimente der inneren Helleniden im späten Paläozoikum bildeten. Die darauf folgenden frühmesozoischen Riftprozesse leiteten die Bildung von Ozeanbecken der Neotethys ein. Intraozeanische Subduktion und die Obduzierung von Ophioliten prägten die Zeit des Jura. Die spätjurassische und frühkretazische tektonische Phase wurde durch die Ablagerung von mittelkretazischen Kalksteinen besiegelt. Die endgültige Schließung von Ozeanbecken der Neotethys im Bereich der inneren Helleniden erfolgte schließlich in der späten Kreide und im Tertiär.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this PhD thesis, a multidisciplinary study has been carried out on metagranitoids and paragneisses from the Eastern Rhodope Massif, northern Greece, to decipher the pre-Alpine magmatic and geodynamic evolution of the Rhodope Massif and to correlate the eastern part with the western/central parts of the orogen. The Rhodope Massif, which occupies the major part of NE Greece and S Bulgaria, represents the easternmost part of the Internal Hellenides. It is regarded as a nappe stack of high-grade units, which is classically subdivided into an upper unit and a lower unit, separated by a SSE-NNW trending thrust plane, the Nestos thrust. Recent research in the central Greek Rhodope Massif revealed that the two units correspond to two distinct terranes of different age, the Permo-Carboniferous Thracia Terrane, which was overthrusted by the Late Jurassic/Early Cretaceous Rhodope Terrane. These terranes are separated by the Nestos suture, a composite zone comprising metapelites, metabasites, metagranitoids and marbles, which record high-pressure and even ultrahigh-pressure metamorphism in places. Similar characteristic rock associations were investigated during this study along several well-constrained cross sections in vincity to the Ada, Sidiro and Kimi villages in the Greek Eastern Rhodope Massif. Field evidence revealed that the contact zone of the two terranes in the Eastern Rhodope Massif is characterized by a mélange of metapelites, migmatitic amphibolites/eclogites, strongly sheared orthogneisses and marbles. The systematical occurrence of this characteristic rock association between the terranes implies that the Nestos suture is a continuous belt throughout the Greek Rhodope Massif. In this study, a new UHP locality could be established and for the first time in the Greek Rhodope, metamorphic microdiamonds were identified in situ in their host zircons using Laser-Raman spectroscopy. The presence of the diamonds as well as element distribution patterns of the zircons, obtained by TOF-SIMS, indicate metamorphic conditions of T > 1000 °C and P > 4 GPa. The high-pressure and ultrahigh-pressure rocks of the mélange zone are considered to have formed during the subduction of the Nestos Ocean in Jurassic times at ~150 Ma. Melting of metapelitic rocks at UHP conditions facilitated the exhumation to lower crustal levels. To identify major crust forming events, basement granitoids were dated by LA-SF-ICPMS and SHRIMP-II U-Pb analyses of zircons. The geochronological results revealed that the Eastern Rhodope Massif consists of two crustal units, a structurally lower Permo-Carboniferous unit corresponding to the Thracia Terrane and a structurally upper Late Jurassic/Early Cretaceous unit corresponding to the Rhodope Terrane, like it was documented for the Central Rhodope Massif. Inherited zircons in the orthogneisses from the Thracia Terrane of the Eastern Rhodope Massif indicate the presence of a pre-existing Neoproterozoic and Ordovician-Silurian basement in this region. Triassic magmatism is witnessed by the zircons of few orthogneisses from the easternmost Rhodope Massif and is interpreted to be related to rifting processes. Whole-rock major and trace element analyses indicate that the metagranitoids from both terranes originated in a subduction-related magmatic-arc environment. The Sr-Nd isotope data for both terranes of the Eastern and Central Rhodope Massif suggest a mixed crust-mantle source with variable contributions of older crustal material as already indicated by the presence of inherited zircons. Geochemical and isotopic similarity of the basement of the Thracia Terrane and the Pelagonian Zone implies that the Thracia Terrane is a fragment of a formerly unique Permo-Carboniferous basement, separated by rifting and opening of the Meliata-Maliac ocean system in Triassic times. A branch of the Meliata-Maliac ocean system, the Nestos Ocean, subducted northwards in Late Jurassic times leading to the formation of the Late Jurassic/Early Cretaceous Rhodope magmatic arc on remnants of the Thracia Terrane as suggested by inherited Permo-Carboniferous zircons. The ~150 Ma zircon ages of the orthogneisses from the Rhodope Terrane indicate that subduction-related magmatism and HP/UHP metamorphism occurred during the same subduction phase. Subduction ceased due to the closure of the Nestos Ocean in the Late Jurassic/Early Cretaceous. The post-Jurassic evolution of the Rhodope Massif is characterized by the exhumation of the Rhodope core complex in the course of extensional tectonics associated with late granite intrusions in Eocene to Miocene times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Michigan Basin is located in the upper Midwest region of the United States and is centered geographically over the Lower Peninsula of Michigan. It is filled primarily with Paleozoic carbonates and clastics, overlying Precambrian basement rocks and covered by Pleistocene glacial drift. In Michigan, more than 46,000 wells have been drilled in the basin, many producing significant quantities of oil and gas since the 1920s in addition to providing a wealth of data for subsurface visualization. Well log tomography, formerly log-curve amplitude slicing, is a visualization method recently developed at Michigan Technological University to correlate subsurface data by utilizing the high vertical resolution of well log curves. The well log tomography method was first successfully applied to the Middle Devonian Traverse Group within the Michigan Basin using gamma ray log curves. The purpose of this study is to prepare a digital data set for the Middle Devonian Dundee and Rogers City Limestones, apply the well log tomography method to this data and from this application, interpret paleogeographic trends in the natural radioactivity. Both the Dundee and Rogers City intervals directly underlie the Traverse Group and combined are the most prolific reservoir within the Michigan Basin. Differences between this study and the Traverse Group include increased well control and “slicing” of a more uniform lithology. Gamma ray log curves for the Dundee and Rogers City Limestones were obtained from 295 vertical wells distributed over the Lower Peninsula of Michigan, converted to Log ASCII Standard files, and input into the well log tomography program. The “slicing” contour results indicate that during the formation of the Dundee and Rogers City intervals, carbonates and evaporites with low natural radioactive signatures on gamma ray logs were deposited. This contrasts the higher gamma ray amplitudes from siliciclastic deltas that cyclically entered the basin during Traverse Group deposition. Additionally, a subtle north-south, low natural radioactive trend in the center of the basin may correlate with previously published Dundee facies tracts. Prominent trends associated with the distribution of limestone and dolomite are not observed because the regional range of gamma ray values for both carbonates are equivalent in the Michigan Basin and additional log curves are needed to separate these lithologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to identify and describe the fauna, correlate it with that of the Upper Devonian of other states, to note the geographic distribution, lithologic variations of outcrops, and to compare measured cross sections.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coal pebbles found in 1994 in the Greham Bell Island (Franz Josef Land Archipelago) are made up of Barzas-type cuticular liptobiolith. The coal belongs to the initial stage of catagenesis and is characterized by high content of cutinite (up to 70%) with very low reflectance (Ro = 0.1%). Maceration products show some tegillate elements of Arthropoda and individual Devonian spores. It is supposed that plant cuticle and Arthropoda exocuticle are present in this coal. Obtained data suggest presence of Paleozoic rocks in the sedimentary sequence, although they are not yet recovered. These data complement available information on distribution of specific Devonian coals and allow to have a new insight into zoogenic material involved in coal formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in radiometric dating result in significant improvements in the geological timescale and provide better insight into the timing of various processes and evolutions within the Earth's system. However, no radiometric ages are contained within the Givetian. Consequently, the absolute ages of the Givetian Stage boundaries, as well as the stage's duration, remain poorly constrained. As an alternative, the analysis of sedimentary cycles allows for the estimation of the duration of this stage. We examined the high-resolution magnetic susceptibility signals of four Givetian outcrops in the Givet area for a possible astronomical imprint, to fully understand the rates of evolutionary and environmental change. All four sections are firmly correlated and wavelet analyses of the magnetic susceptibility signals reveal the imprint of astronomical eccentricity forcing. The highly stable 405 kyr cycles constrain the duration of the Givetian Stage at 4.35±0.45 Myr, which is in good agreement with the International Chronostratigraphic Chart (5.0 Myr). The studied sections also exhibit an imprint of obliquity, suggesting a climatic teleconnection between low and high latitudes. The corresponding microfacies curves demonstrate similar astronomical imprint, and thereby indicate that the observed 10**5 year-scale cyclicity is the result of climatic and environmental change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three complementary imaging techniques were used to describe a complex rosette-shaped microboring that penetrates the shells of brachiopods from the Ordovician–Silurian shallow marine limestones of Anticosti Island, Canada. Pyrodendrina cupra n. igen. and isp. is among the oldest dendrinid microborings and consists of shallow and deep penetrating canals that radiate from a central polygonal chamber. The affinity of the tracemaker is unknown, but a foraminiferal origin, as proposed for some dendrinid borings, is rejected. Combining microCT with traditional stereomicroscopy and SEM helped distinguish and quantify fine morphological features while maintaining contextual information of the microboring within the shell substrate. Different imaging techniques inherently bias the description of microborings. These biases must be accounted for as new methods in ichnotaxonomy are integrated with past research based on different methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The name "Schlagwasser breccia" is a synopsis of several debris flows in the Warstein area, which can be derived from the Warstein carbonate platform and the Scharfenberg reef. Though only locally developed, the breccia is important for the understanding of paleogeography and sedimentology in the Eastern Sauerland. Considering this breccia some gravitational-resedimentary slide movements between a high, consisting of reef carbonates, and a basin with flinz beds can be pointed out. From the uppermost Middle Devonian to the lowermost Lower Carboniferous several slides yielded the sedimentary components building up the 30 to 50 m thick polymict breccia. Some breccias were redeposited repeatedly as can be verified by different conodont maxima in single samples. Supplying area was the western part of the Warstein high, from which the slide masses glided off to the East and Southeast, more seldom to the West and Westsouthwest. All conodont zones from the upper Middle Devonian up to the lowermost Carboniferous could be identified in the Schlagwasser breccia. Therefore, an uninterrupted continuous sedimentation must have been prevalent in the supplying area; today this area nearly is denuded of flinz beds and cephalopod limestones. The slide masses spread transgressively to the East up to a substratum consisting of different units as massive limestone, flinz beds and cephalopod limestone; they are overlapped by Hangenberg beds, alum schists and siliceous rocks of the Lower Carboniferous. Parts of the substratum were transported during the progress of the slide masses. Proximal and distal parts of the flow masses can be distinguished by the diameter of the pebbles. Graded bedding and banking structures are marked only rarely. Way of transport was up to 3 km. Differently aged slide masses do not always overlap, but are placed side by side, too. Usually the slide masses do not spread out upon a greater area during sedimentation, but form closely limited debris flows. Synsedimentary fracturing and tilting of the reef platform, epirogenetic movements and seaquakes caused the slides. The entire formation period of the breccia includes about 20 millions of years. The longevity of the events points to solid paleomorphological situations around the eastern margin of the carbonate platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 823 m thick glaciomarine Cenozoic section sitting unconformably on the Lower Devonian Beacon Supergroup was recovered in CRP-3. This paper reviews the chronostratigraphical constraints for the Cenozoic section. Between 3 and 480.27 mbsf 23 unconformity bounded cycles of sediment were recorded. Each unconformity is thought to represent a hiatus of uncertain duration. Four magnetozones have been recognised from the Cenozoic section. The record is complex with several 'tiny wiggles'' recorded throughout. Biostratigraphical or Sr ages, which could be used to link these magnetozones to the magnetic polarity time scale are restricted to the upper 190 m of sediment. Two diatom datums (Cavitatus jouseanus at 48.9 mbsf and Rhizosolenica antarctica at 68.60 mbsf), together with five Sr-isotope dates derived from molluscan fragments taken from between 10.88 and 190.29 mbsf indicate an early Oligocene (c. 31 Ma) age for this interval. The appearance of a new species of the bivalve ?Adamussium at about 325 mbsf, suggests that the Oligocene age can be extended down to this level. This confirms that the dominantly reversed magnetozone (RI), recorded down to about 340 mbsf, is Chron C12r. The ages imply high sedimentation rates and only minimal time gaps at the sequence boundaries. Below 340 mbsf there are no independent datums to guide the correlation of the magnetozones to the magnetic polarity time scale. However, the absence of in situ dinocysts attributable to Transantarctic Flora, if not a result of environmental control, limits the age of the base of the hole to between c. 33.5 and 35 Ma.