863 resultados para Shrimp aquaculture in India,
Resumo:
The most spectacular applications of crystallography are currently concerned with biological macromolecules like proteins and their assemblies. Macromolecular crystallography originated in England in the thirties of the last century, but definitive results began to appear only around 1960. Since then macromolecular crystallography has grown to become central to modern biology. India has a long tradition in crystallography starting with the work of K. Banerjee in the thirties. In addition to their contributions to crystallography, G.N. Ramachandran and his colleagues gave a head start to India in computational biology, molecular modeling and what we now call bioinformatics. However, attempts to initiate macromolecular crystallography in India started only in the seventies. The work took off the ground after the Department of Science and Technology handsomely supported the group at Indian Institute of Science, Bangalore in 1983. The Bangalore group was also recognized as a national nucleus for the development of the area in the country. Since then macromolecular crystallography, practiced in more than 30 institutions in the country, has grown to become an important component of scientific research in India. The articles in this issue provide a flavor of activities in the area in the country. The area is still in an expanding phase and is poised to scale greater heights.
Resumo:
Long term forest research sites in India, going by different names including Linear Tree Increment Plots, Linear Increment Plots, Linear Sample Plots and Permanent Preservation Plots, cover diverse plant communities and environmental conditions. Presently, some of these long-term observational studies are functional, some are disturbed and others have almost been lost. The accumulated data will become increasingly important in the context of environmental modelling and climate change, especially if the plots and data can be maintained and/or revived. This contribution presents the history and current state of forest research plots in India, including details of locations and re-measurements. We provide a brief introduction of the National Forest Inventory (NFI), Preservation Plots in natural forests, the 50-ha Mudumalai Forest Dynamics Plot as part of the Centre for Tropical Forest Science and Smithsonian Institution Global Earth Observatories network (CTFS-SIGEO), and research plots established in plantations for tree growth studies and modelling. We also present some methodological details including assessment and analysis for two types of observational studies, the Tree Count Plots (TCP) and Tree Re-measurement Plots (TRP). Arguments are presented in favour of enumeration and analysis methods which are consistent with current approaches in forest ecological research. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
India's energy challenges are three pronged: presence of majority energy poor lacking access to modern energy; need for expanding energy system to bridge this access gap as well as to meet the requirements of fast-growing economy; and the desire to partner with global economies in mitigating the threat of climate change. The presence of 364 million people without access to electricity and 726 million relying on biomass for cooking out of a total rural population of 809 million indicate the seriousness of challenge. In this paper, we discuss an innovative approach to address this challenge, which intends to take advantage of recent global developments and untapped capabilities possessed by India. Intention is to use climate change mitigation imperative as a stimulus and adopt a public-private-partnership-driven ‘business model' with innovative institutional, regulatory, financing, and delivery mechanisms. Some of the innovations are: creation of rural energy access authorities within the government system as leadership institutions; establishment of energy access funds to enable transitions from the regime of "investment/fuel subsidies" to "incentive-linked" delivery of energy services; integration of business principles to facilitate affordable and equitable energy sales and carbon trade; and treatment of entrepreneurs as implementation targets. This proposal targets 100% access to modern energy carriers by 2030 through a judicious mix of conventional and biomass energy systems with an investment of US$35 billion over 20 years. The estimated annual cost of universal energy access is about US$9 billion for a GHG mitigation potential of 213Tg CO2e at an abatement cost of US$41/tCO2e. It is a win-win situation for all stakeholders. Households benefit from modern energy carriers at affordable cost; entrepreneurs run profitable energy enterprises; carbon markets have access to CERs; the government has the satisfaction of securing energy access to rural people; and globally, there is a benefit of climate change mitigation.
Resumo:
In the present work, historical and instrumental seismicity data of India and its adjoining areas (within 300km from Indian political boundary) are compiled to form the earthquake catalog for the country covering the period from 1505 to 2009. The initial catalogue consisted of about 139563 earthquake events and after declustering,the total number of events obtained was 61315. Region specific earthquake magnitude scaling relations correlating different magnitude scales were achieved and a homogenous earthquake catalogue in moment magnitude (MW) scale was developed for the region. This paper also presents the results of the use of Geographic Information Systems (GIS) to prepare a digitized seismic source map of India. The latest earthquake data were superimposed on the digitized source map to get a final Seismotectonic map of India. The study area has been divided into 1225 grid points (approximately 110km×110km) and the seismicity analysis has been done to get the spatial variation of seismicity parameters ‘a’ and ‘b’ across the country. The homogenized earthquake catalogue with the event details is listed in the website http://civil.iisc.ernet.in/~sreevals/resource.htm
Resumo:
G.N. Ramachandran is among the founding fathers of structural molecular biology. He made pioneering contributions in computational biology, modelling and what we now call bioinformatics. The triple helical coiled coil structure of collagen proposed by him forms the basis of much of collagen research at the molecular level. The Ramachandran map remains the simplest descriptor and tool for validation of protein structures. He has left his imprint on almost all aspects of biomolecular conformation. His contributions in the area of theoretical crystallography have been outstanding. His legacy has provided inspiration for the further development of structural biology in India. After a pause, computational biology and bioinformatics are in a resurgent phase. One of the two schools established by Ramachandran pioneered the development of macromolecular crystallography, which has now grown into an important component of modern biological research in India. Macromolecular NMR studies in the country are presently gathering momentum. Structural biology in India is now poised to again approach heights of the kind that Ramachandran conquered more than a generation ago.
Resumo:
Indian civilization developed a strong system of traditional medicine and was one of the first nations to develop a synthetic drug. In the postindependence era, Indian pharmaceutical industry developed a strong base for production of generic drugs. Challenges for the future are to give its traditional medicine a strong scientific base and develop research and clinical capability to consistently produce new drugs based on advances in modem biological sciences.
Resumo:
Growing demand for urban built spaces has resulted in unprecedented exponential rise in production and consumption of building materials in construction. Production of materials requires significant energy and contributes to pollution and green house gas (GHG) emissions. Efforts aimed at reducing energy consumption and pollution involved with the production of materials fundamentally requires their quantification. Embodied energy (EE) of building materials comprises the total energy expenditure involved in the material production including all upstream processes such as raw material extraction and transportation. The current paper deals with EE of a few common building materials consumed in bulk in Indian construction industry. These values have been assessed based on actual industrial survey data. Current studies on EE of building materials lack agreement primarily with regard to method of assessment and energy supply assumptions (whether expressed in terms of end use energy or primary energy). The current paper examines the suitability of two basic methods; process analysis and input-output method and identifies process analysis as appropriate for EE assessment in the Indian context. A comparison of EE values of building materials in terms of the two energy supply assumptions has also been carried out to investigate the associated discrepancy. The results revealed significant difference in EE of materials whose production involves significant electrical energy expenditure relative to thermal energy use. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we develop a consolidated Supply-Demand framework of the Venture Capital (VC) ecosystem for India. Further, we empirically analyze the supply side of this ecosystem to ascertain the influence of systematic (macro) and non-systematic (micro) factors on VC fundraising. At the macro level, our results indicate that relatively strong fundamentals of the Indian economy in the past decade as compared with the severe recessionary tendencies in the developed economies have been critical in determining the aggregate volume of VC fundraising. Among the micro factors, past performance and reputation of the individual fund managers have been instrumental in determining their fund raising potential.
Resumo:
Concentration of greenhouse gases (GHG) in the atmosphere has been increasing rapidly during the last century due to ever increasing anthropogenic activities resulting in significant increases in the temperature of the Earth causing global warming. Major sources of GHG are forests (due to human induced land cover changes leading to deforestation), power generation (burning of fossil fuels), transportation (burning fossil fuel), agriculture (livestock, farming, rice cultivation and burning of crop residues), water bodies (wetlands), industry and urban activities (building, construction, transport, solid and liquid waste). Aggregation of GHG (CO2 and non-CO2 gases), in terms of Carbon dioxide equivalent (CO(2)e), indicate the GHG footprint. GHG footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This study focuses on accounting of the amount of three important greenhouses gases namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and thereby developing GHG footprint of the major cities in India. National GHG inventories have been used for quantification of sector-wise greenhouse gas emissions. Country specific emission factors are used where all the emission factors are available. Default emission factors from IPCC guidelines are used when there are no country specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. The current study estimates GHG footprint or GHG emissions (in terms of CO2 equivalent) for Indian major cities and explores the linkages with the population and GDP. GHG footprint (Aggregation of Carbon dioxide equivalent emissions of GHG's) of Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad are found to be 38,633.2 Gg, 22,783.08 Gg, 14,812.10 Gg, 22,090.55 Gg, 19,796.5 Gg, 13,734.59 Gg and 91,24.45 Gg CO2 eq., respectively. The major contributors sectors are transportation sector (contributing 32%, 17.4%, 13.3%, 19.5%, 43.5%, 56.86% and 25%), domestic sector (contributing 30.26%, 37.2%, 42.78%, 39%, 21.6%, 17.05% and 27.9%) and industrial sector (contributing 7.9%, 7.9%, 17.66%, 20.25%, 1231%, 11.38% and 22.41%) of the total emissions in Delhi, Greater Mumbai, Kolkata, Chennai, Greater Bangalore, Hyderabad and Ahmedabad, respectively. Chennai emits 4.79 t of CO2 equivalent emissions per capita, the highest among all the cities followed by Kolkata which emits 3.29 t of CO2 equivalent emissions per capita. Also Chennai emits the highest CO2 equivalent emissions per GDP (2.55 t CO2 eq./Lakh Rs.) followed by Greater Bangalore which emits 2.18 t CO2 eq./Lakh Rs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The history of computing in India is inextricably intertwined with two interacting forces: the political climate determined by the political party in power) and the government policies mainly driven by the technocrats and bureaucrats who acted within the boundaries drawn by the political party in power. There were four break points (which occurred in 1970, 1978, 1991 and 1998) that changed the direction of the development of computers and their applications. This article explains why these breaks occurred and how they affected the history of computing in India.
Resumo:
Regionalization of extreme rainfall is useful for various applications in hydro-meteorology. There is dearth of regionalization studies on extreme rainfall in India. In this perspective, a set of 25 regions that are homogeneous in 1-, 2-, 3-, 4- and 5-day extreme rainfall is delineated based on seasonality measure of extreme rainfall and location indicators (latitude, longitude and altitude) by using global fuzzy c-means (GFCM) cluster analysis. The regions are validated for homogeneity in L-moment framework. One of the applications of the regions is in arriving at quantile estimates of extreme rainfall at sparsely gauged/ungauged locations using options such as regional frequency analysis (RFA). The RFA involves use of rainfall-related information from gauged sites in a region as the basis to estimate quantiles of extreme rainfall for target locations that resemble the region in terms of rainfall characteristics. A procedure for RFA based on GFCM-delineated regions is presented and its effectiveness is evaluated by leave-one-out cross validation. Error in quantile estimates for ungauged sites is compared with that resulting from the use of region-of-influence (ROI) approach that forms site-specific regions exclusively for quantile estimation. Results indicate that error in quantile estimates based on GFCM regions and ROI are fairly close, and neither of them is consistent in yielding the least error over all the sites. The cluster analysis approach was effective in reducing the number of regions to be delineated for RFA.
Resumo:
We report on the results of a country-wide survey of people's perceptions of issues relating to the conservation of biodiversity and ecosystems in India. Our survey, mainly conducted online, yielded 572 respondents, mostly among educated, urban and sub-urban citizens interested in ecological and environmental issues. 3160 ``raw'' questions generated by the survey were iteratively processed by a group of ecologists, environmental and conservation scientists to produce the primary result of this study: a summarized list of 152 priority questions for the conservation of India's biodiversity and ecosystems, which range across 17 broad thematic classes. Of these, three thematic classes-''Policy and Governance'', ``Biodiversity and Endangered Species'' and ``Protection and Conservation''-accounted for the largest number of questions. A comparative analysis of the results of this study with those from similar studies in other regions brought out interesting regional differences in the thematic classes of questions that were emphasized and suggest that local context plays a large role in determining emergent themes. We believe that the ready list of priority issues generated by this study can be a useful guiding framework for conservation practitioners, researchers, citizens, policy makers and funders to focus their resources and efforts in India's conservation research, action and funding landscape. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.