875 resultados para Sheet-metal work - Simulation methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photocopy. Springfield, Va., Distributed by Clearinghouse for Federal Scientific and Technical Information [1969]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity, binomial random variables have a finite range of sample values. This probabilistic property has been used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic simulations when larger stepsize is used. In this approach a binomial random variable is defined for a single reaction channel in order to keep the reaction number of this channel below the numbers of molecules that undergo this reaction channel. A sampling technique is also designed for the total reaction number of a reactant species that undergoes two or more reaction channels. Samples for the total reaction number are not greater than the molecular number of this species. In addition, probability properties of the binomial random variables provide stepsize conditions for restricting reaction numbers in a chosen time interval. These stepsize conditions are important properties of robust leap control strategies. Numerical results indicate that the proposed binomial leap methods can be applied to a wide range of chemical reaction systems with very good accuracy and significant improvement on efficiency over existing approaches. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we give an overview of some very recent work, as well as presenting a new approach, on the stochastic simulation of multi-scaled systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge–Kutta methods and the balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and present a new approach which couples the three regimes mentioned above. We then apply this approach to a biologically inspired problem involving the expression and activity of LacZ and LacY proteins in E. coli, and conclude with a discussion on the significance of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predatory insects and spiders are key elements of integrated pest management (IPM) programmes in agricultural crops such as cotton. Management decisions in IPM programmes should to be based on a reliable and efficient method for counting both predators and pests. Knowledge of the temporal constraints that influence sampling is required because arthropod abundance estimates are likely to vary over a growing season and within a day. Few studies have adequately quantified this effect using the beat sheet, a potentially important sampling method. We compared the commonly used methods of suction and visual sampling to the beat sheet, with reference to an absolute cage clamp method for determining the abundance of various arthropod taxa over 5 weeks. There were significantly more entomophagous arthropods recorded using the beat sheet and cage clamp methods than by using suction or visual sampling, and these differences were more pronounced as the plants grew. In a second trial, relative estimates of entomophagous and phytophagous arthropod abundance were made using beat sheet samples collected over a day. Beat sheet estimates of the abundance of only eight of the 43 taxa examined were found to vary significantly over a day. Beat sheet sampling is recommended in further studies of arthropod abundance in cotton, but researchers and pest management advisors should bear in mind the time of season and time of day effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold roll forming is an extremely important but little studied sheet metal forming process. In this thesis, the process of cold roll forming is introduced and it is seen that form roll design is central to the cold roll forming process. The conventional design and manufacture of form rolls is discussed and it is observed that surrounding the design process are a number of activities which although peripheral are time consuming and a possible source of error. A CAD/CAM system is described which alleviates many of the problems traditional to form roll design. New techniques for the calculation of strip length and controlling the means of forming bends are detailed. The CAD/CAM system's advantages and limitations are discussed and, whilst the system has numerous significant advantages, its principal limitation can be said to be the need to manufacture form rolls and test them on a mill before a design can be stated satisfactory. A survey of the previous theoretical and experimental analysis of cold roll forming is presented and is found to be limited. By considering the previous work, a method of numerical analysis of the cold roll forming process is proposed based on a minimum energy approach. Parallel to the numerical analysis, a comprehensive range of software has been developed to enhance the designer's visualisation of the effects of his form roll design. A complementary approach to the analysis of form roll design is the generation of form roll design, a method for the partial generation of designs is described. It is suggested that the two approaches should continue in parallel and that the limitation of each approach is knowledge of the cold roll forming process. Hence, an initial experimental investigation of the rolling of channel sections is described. Finally, areas of potential future work are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold roll forming of thin-walled sections is a very useful process in the sheet metal industry. However, the conventional method for the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is a very time consuming and skill demanding exercise. This thesis describes the establishment of a stand-alone minicomputer based CAD/CAM system for assisting the design and manufacture of form-rolls. The work was undertaken in collaboration with a leading manufacturer of thin-walled sections. A package of computer programs have been developed to provide computer aids for every aspect of work in form-roll design and manufacture. The programs have been successfully implemented, as an integrated CAD/CAM software system, on the ICL PERQ minicomputer with graphics facilities. Thus, the developed CAD/CAM system is a single-user workstation, with software facilities to help the user to perform the conventional roll design activities including the design of the finished section, the flower pattern, and the form-rolls. A roll editor program can then be used to modify, if required, the computer generated roll profiles. As far as manufacturing is concerned, a special-purpose roll machining program and postprocessor can be used in conjunction to generate the NC control part-programs for the production of form-rolls by NC turning. Graphics facilities have been incorporated into the CAD/CAM software programs to display drawings interactively on the computer screen throughout all stages of execution of the CAD/CAM software. It has been found that computerisation can shorten the lead time in all activities dealing with the design and manufacture of form-rolls, and small or medium size manufacturing companies can gain benefits from the CAD/CM! technology by developing, according to its own specification, a tailor-made CAD/CAM software system on a low cost minicomputer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulation is an effective method for improving supply chain performance. However, there is limited advice available to assist practitioners in selecting the most appropriate method for a given problem. Much of the advice that does exist relies on custom and practice rather than a rigorous conceptual or empirical analysis. An analysis of the different modelling techniques applied in the supply chain domain was conducted, and the three main approaches to simulation used were identified; these are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). This research has examined these approaches in two stages. Firstly, a first principles analysis was carried out in order to challenge the received wisdom about their strengths and weaknesses and a series of propositions were developed from this initial analysis. The second stage was to use the case study approach to test these propositions and to provide further empirical evidence to support their comparison. The contributions of this research are both in terms of knowledge and practice. In terms of knowledge, this research is the first holistic cross paradigm comparison of the three main approaches in the supply chain domain. Case studies have involved building ‘back to back’ models of the same supply chain problem using SD and a discrete approach (either DES or ABM). This has led to contributions concerning the limitations of applying SD to operational problem types. SD has also been found to have risks when applied to strategic and policy problems. Discrete methods have been found to have potential for exploring strategic problem types. It has been found that discrete simulation methods can model material and information feedback successfully. Further insights have been gained into the relationship between modelling purpose and modelling approach. In terms of practice, the findings have been summarised in the form of a framework linking modelling purpose, problem characteristics and simulation approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 50 years there has been considerable progress in our understanding of biomolecular interactions at an atomic level. This in turn has allowed molecular simulation methods employing full atomistic modeling at ever larger scales to develop. However, some challenging areas still remain where there is either a lack of atomic resolution structures or where the simulation system is inherently complex. An area where both challenges are present is that of membranes containing membrane proteins. In this review we analyse a new practical approach to membrane protein study that offers a potential new route to high resolution structures and the possibility to simplify simulations. These new approaches collectively recognise that preservation of the interaction between the membrane protein and the lipid bilayer is often essential to maintain structure and function. The new methods preserve these interactions by producing nano-scale disc shaped particles that include bilayer and the chosen protein. Currently two approaches lead in this area: the MSP system that relies on peptides to stabilise the discs, and SMALPs where an amphipathic styrene maleic acid copolymer is used. Both methods greatly enable protein production and hence have the potential to accelerate atomic resolution structure determination as well as providing a simplified format for simulations of membrane protein dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shearing is a fast and inexpensive method to cut sheet metal that has been used since the beginning of the industrialism. Consequently, published experimental studies of shearing can be found from over a century back in time. Recent studies, however, are due to the availability of low cost digital computation power, mostly based on finite element simulations that guarantees quick results. Still, for validation of models and simulations, accurate experimental data is a requisite. When applicable, 2D models are in general desirable over 3D models because of advantages like low computation time and easy model formulation. Shearing of sheet metal with parallel tools is successfully modelled in 2D with a plane strain approximation, but with angled tools the approximation is less obvious. Therefore, plane strain approximations for shearing with angled tools were evaluated by shear experiments of high accuracy. Tool angle, tool clearance, and clamping of the sheet were varied in the experiments. The results showed that the measured forces in shearing with angled tools can be approximately calculated using force measurements from shearing with parallel tools. Shearing energy was introduced as a quantifiable measure of suitable tool clearance range. The effects of the shearing parameters on forces were in agreement with previous studies. Based on the agreement between calculations and experiments, analysis based on a plane strain assumption is considered applicable for angled tools with a small (up to 2 degrees) rake angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis was to observe possibilities to enhance the development of manufacturing costs savings and competitiveness related to the compact KONE Renova Slim elevator door. Compact slim doors are especially designed for EMEA markets. EMEA market area is characterized by highly competitive pricing and lead times which are manifested as pressures to decrease manufacturing costs and lead times of the compact elevator door. The new elevator safety code EN81-20 coming live during the spring 2016 will also have a negative impact on the cost and competitiveness development making the situation more acute. As a sheet metal product the KONE Renova slim is highly variable. Manufacturing methods utilized in the production are common and robust methods. Due to the low volumes, high variability and tight lead times the manufacturing of the doors is facing difficulties. Manufacturing of the doors is outsourced to two individual suppliers Stera and Wittur. This thesis was implemented in collaboration with Stera. KONE and Stera pursue a long term and close partnership where the benefits reached by the collaboration are shared equally. Despite the aims, the collaboration between companies is not totally visible and various barriers are hampering the development towards more efficient ways of working. Based on the empirical studies related to this thesis, an efficient standardized (A+) process was developed for the main variations of the compact elevator door. Using the standardized process KONE is able to order the most important AMDS door variations from Stera with increased quality, lower manufacturing costs and manufacturing lead time compared to the current situation. In addition to all the benefits, the standardized (A+) process also includes risks in practice. KONE and the door supplier need to consider these practical risks together before decisions are made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical Submersible Pump (ESP) is used as an artificial lift technique. However, pumping viscous oil is generally associated with low Reynolds number flows. This condition leads to a performance degradation respect to the performance expected from the regular operation with water that most of the centrifugal pumps are originally designed for. These issues are considered in this investigation through a numerical study of the flow in two different multistage, semi-axial type ESPs. This investigation is carried out numerically using a Computational Fluid Dynamics (CFD) package, where the transient RANS equations are solved numerically. The turbulence is modeled using the SST model. Head curves for several operating conditions are compared with manufacturer’s curves and experimental data for a three-stage ESP, showing good agreement for a wide range of fluid viscosities and rotational speeds. Dimensionless numbers (n, n, n e Re) are used to investigate performance degradation of the ESPs. In addition, flow phenomena through the impellers of the ESPs are investigated using flow field from numerical results. Results show that performance degradation is directly related to rotational Reynolds number, Re. In addition, it was verified that performance degradation occurs for constant normalized specific speedn, which shows that performance degradation occurs similarly for different centrifugal pumps. Moreover, experimental data and numerical results agreed with a correlation from literature between head and flow correction factors proposed by Stepanoff (1967). A definition of modified Reynolds number was proposed and relates the head correction factor to viscosity. A correlation between head correction factor and the modified Reynolds number was proposed, which agreed well with numerical and experimental data. Then, a method to predict performance degradation based on the previous correlations was proposed. This method was compared with others from literature. In general, results and conclusions from this work can also be useful to bring more information about the flow of highly viscous fluids in pumps, especially in semi-axial, multistage ESPs.