898 resultados para Sexual Selection
Resumo:
In most animal species, particularly those in which females engage in polyandry, mate choice is a sequential process in which a female must choose to mate or not to mate with each male encountered. Although a number of theoretical and empirical investigations have examined the effects of sequential mate choice on the operation of sexual selection, how females respond to solicitation by previous mates has received little attention. Here, we report the results of a study carried out on the polyandrous pseudoscorpion, Cordylochernes scorpioides, that assessed the sexual receptivity of once-mated females presented after a lapse of 1.5 hr or 48 hr with either their first mate or a different male. Females exhibited a high level of receptivity to new males, irrespective of intermating interval. By contrast, time between matings exerted a strong effect on female receptivity to previous mates. After a lapse of 48 hr, females did not differ significantly in their receptivity toward previous mates and different males, whereas at 1.5 hr after first mating, females were almost invariably unreceptive to males from whom they had previously accepted sperm. This result could not be attributed to male size or mating experience or to male sexual receptivity. Indeed, males were as willing to transfer sperm to a previous mate as they were to a new female. This difference between males and females in their propensity to remate with the same individual may reflect a conflict between the sexes, with males seeking to minimize postcopulatory sexual selection and females actively keeping open the opportunity for sperm competition and female choice of sperm by discriminating against previous mates.
Resumo:
The “shape” of a female mating preference is the relationship between a male trait and the probability of acceptance as a mating partner. The shape of preferences is important in many models of sexual selection, mate recognition, communication, and speciation, yet it has rarely been measured precisely. Here I examine preference shape for male calling song in a bushcricket (katydid). Preferences change dramatically between races of a species, from strongly directional to broadly stabilizing (but with a net directional effect). Preference shape generally matches the distribution of the male trait. This is compatible with a coevolutionary model of signal-preference evolution, although it does not rule out an alternative model, sensory exploitation. Preference shapes are shown to be genetic in origin.
Resumo:
Recent studies have shown UV vision and markings to be important in vertebrates, particularly birds, where behavioral experiments have demonstrated its potential importance in sexual selection. However, there has been no genetic evidence that UV markings determine patterns of evolution among natural populations. Here we report molecular evidence that UV markings are associated with the pattern of gene flow in the Tenerife lizard (Gallotia galloti). This species has vicariance-induced, approximate east–west lineages in Tenerife closely congruent with the primary lineages of the sympatric gecko species. Against expectations, these molecular phylogeographic lineages (representing geological history) and isolation-by-distance do not appear to influence gene flow. Sexually mature males from populations either side of a latitudinal ecotone have different UV markings and gene flow appears to be linked to this difference in UV markings. It may be that these groups with different UV sexual markings mate assortatively, restricting the gene flow between them. This has implications for debate on the relative importance of vicariance and biotopes in influencing biodiversity, with this evidence supporting the latter.
Resumo:
External (environmental) factors affecting the speciation of birds are better known than the internal (genetic) factors. The opposite is true for several groups of invertebrates, Drosophila being the outstanding example. Ideas about the genetics of speciation in general trace back to Dobzhansky who worked with Drosophila. These ideas are an insufficient guide for reconstructing speciation in birds for two main reasons. First, speciation in birds proceeds with the evolution of behavioral barriers to interbreeding; postmating isolation usually evolves much later, perhaps after gene exchange has all but ceased. As a consequence of the slow evolution of postmating isolating factors the scope for reinforcement of premating isolation is small, whereas the opportunity for introgressive hybridization to influence the evolution of diverging species is large. Second, premating isolation may arise from nongenetic, cultural causes; isolation may be affected partly by song, a trait that is culturally inherited through an imprinting-like process in many, but not all, groups of birds. Thus the genetic basis to the origin of bird species is to be sought in the inheritance of adult traits that are subject to natural and sexual selection. Some of the factors involved in premating isolation (plumage, morphology, and behavior) are under single-gene control, most are under polygenic control. The genetic basis of the origin of postmating isolating factors affecting the early development of embryos (viability) and reproductive physiology (sterility) is almost completely unknown. Bird speciation is facilitated by small population size, involves few genetic changes, and occurs relatively rapidly.
Resumo:
Rapid divergence in postmating-prezygotic characters suggests that selection may be responsible for generating reproductive barriers between closely related species. Theoretical models indicate that this rapid divergence could be generated by a series of male adaptations and female counteradaptations by means of sexual selection or conflict, but empirical tests of particular mechanisms are generally lacking. Moreover, although a male–female genotypic interaction in mediating sperm competition attests to an active role of females, molecular or morphological evidence of the female's participation in the coevolutionary process is critically needed. Here we show that postmating-prezygotic variation among populations of cactophilic desert Drosophila reflects divergent coevolutionary trajectories between the sexes. We explicitly test the female's role in intersexual interactions by quantifying differences in a specific postmating-prezygotic reproductive character, the insemination reaction mass, in two species, Drosophila mojavensis and Drosophila arizonae. A series of interpopulation crosses confirmed that population divergence was propelled by male–female interactions, a prerequisite if the selective forces derive from sexual conflicts. An association between the reaction mass and remating and oviposition behavior argues that divergence has been propelled by sexually antagonistic coevolution, and potentially has important implications for speciation.
Resumo:
When the relative fitness of sons and daughters differs, sex-allocation theory predicts that it would be adaptive for individuals to adjust their investment in different sexes of offspring. Sex ratio adjustment by females in response to the sexual attractiveness of their mate would be an example of this. In vertebrates the existence of this form of sex ratio adjustment is controversial and may be confounded with sex-biased mortality, particularly in sexually size-dimorphic species. Here we use PCR amplification of a conserved W-chromosome-linked gene to show that the sex ratio within broods of a natural population of sexually size-monomorphic collared flycatchers Ficedula albicollis is related to the size of their father's forehead patch, a heritable secondary sexual character implicated in female choice. Experimental manipulations of paternal investment, which influence the size of his character in future breeding attempts, result in corresponding changes in the sex ratio of offspring born to males in those breeding attempts. In contrast, manipulations of maternal investment have no effect on future sex ratios, and there is no relationship between variables predicting the reproductive value of the brood and nestling sex ratio. Analysis of recruitment of offspring reveals similar patterns of sex ratio bias. The results suggest that female collared flycatchers be able to adjust the sex ratio of eggs ovulated in response to the phenotype of their mate. This finding is most consistent with "genetic quality" models of sexual selection.
Resumo:
Although females prefer to mate with brightly colored males in numerous species, the benefits accruing to such females are virtually unknown. According to one hypothesis of sexual selection theory, if the expression of costly preferred traits in males (such as conspicuous colors) is proportional to the male's overall quality or reveals his quality, a well-developed trait should indicate good condition and/or viability for example. A female choosing such a male would therefore stand to gain direct or indirect fitness benefits, or both. Among potential phenotypic indicators of an individual's quality are the amount and brightness of its carotenoid-based colors and its boldness, as measured by its willingness to risk approaching predators without being killed. Here, we show experimentally that in the Trinidadian guppy (Poecilia reticulata) the visual conspicuousness of the color pattern of males correlates positively with boldness toward, and with escape distance from, a cichlid fish predator. Bold individuals are thus more informed about nearby predators and more likely to survive encounters with them. Mate-choice experiments showed that females prefer colorful males as mates, but prefer bolder males irrespective of their coloration when given the opportunity to observe their behavior toward a potential fish predator. By preferentially mating with colorful males, female guppies are thus choosing on average, relatively bold, and perhaps more viable, individuals. In doing so, and to the extent that viability is heritable, they potentially gain indirect fitness benefits by producing more viable offspring than otherwise.
Resumo:
Nos estudos sobre a teoria da Seleção Sexual, as libélulas têm sido amplamente estudadas devido à grande variedade de padrões comportamentais, de coloração e táticas reprodutivas. Como forma de demonstrar táticas reprodutivas adotadas por duas espécies de libélulas, esta dissertação teve como objetivos principais: i) investigar o papel de traços secundários como a coloração corporal na competição intra-sexual de uma espécie territorial e ii) analisar se os traços corporais como tamanho e morfologia das asas predizem a tática de acasalamento adotada por machos de uma espécie nãoterritorial. Sugere-se que a coloração corporal pode predizer o resultado de lutas e também se correlacionar positivamente com a condição física dos machos territoriais de Tigriagrion aurantinigrum. Ademais, traços corporais como o tamanho e a morfologia das asas influenciam na tática reprodutiva utilizada por machos não-territoriais de Epipleoneura williamsoni. Portanto, com os resultados obtidos, conclui-se que a variação nos sinais visuais exerce um papel essencial na comunicação animal e na resolução de conflitos, indicando ainda que pode haver uma sinalização da condição física dos machos. Além disso, os resultados mostraram evidências em como diferentes táticas reprodutivas se relacionam com traços corporais como agilidade e tamanho corporal, os quais podem influenciar no sucesso reprodutivo dos indivíduos.
Resumo:
The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects.
Resumo:
Stabilizing selection has been predicted to change genetic variances and covariances so that the orientation of the genetic variance-covariance matrix (G) becomes aligned with the orientation of the fitness surface, but it is less clear how directional selection may change G. Here we develop statistical approaches to the comparison of G with vectors of linear and nonlinear selection. We apply these approaches to a set of male sexually selected cuticular hydrocarbons (CHCs) of Drosophila serrata. Even though male CHCs displayed substantial additive genetic variance, more than 99% of the genetic variance was orientated 74.9degrees away from the vector of linear sexual selection, suggesting that open-ended female preferences may greatly reduce genetic variation in male display traits. Although the orientation of G and the fitness surface were found to differ significantly, the similarity present in eigenstructure was a consequence of traits under weak linear selection and strong nonlinear ( convex) selection. Associating the eigenstructure of G with vectors of linear and nonlinear selection may provide a way of determining what long-term changes in G may be generated by the processes of natural and sexual selection.
Resumo:
Single male sexually selected traits have been found to exhibit substantial genetic variance, even though natural and sexual selection are predicted to deplete genetic variance in these traits. We tested whether genetic variance in multiple male display traits of Drosophila serrata was maintained under field conditions. A breeding design involving 300 field-reared males and their laboratory-reared offspring allowed the estimation of the genetic variance-covariance matrix for six male cuticular hydrocarbons (CHCs) under field conditions. Despite individual CHCs displaying substantial genetic variance under field conditions, the vast majority of genetic variance in CHCs was not closely associated with the direction of sexual selection measured on field phenotypes. Relative concentrations of three CHCs correlated positively with body size in the field, but not under laboratory conditions, suggesting condition-dependent expression of CHCs under field conditions. Therefore condition dependence may not maintain genetic variance in preferred combinations of male CHCs under field conditions, suggesting that the large mutational target supplied by the evolution of condition dependence may not provide a solution to the lek paradox in this species. Sustained sexual selection may be adequate to deplete genetic variance in the direction of selection, perhaps as a consequence of the low rate of favorable mutations expected in multiple trait systems.
Resumo:
Ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent selection. Although laboratory and field studies provide evidence that 'ecological speciation' can occur, our understanding of the details of the process is incomplete. Here we review ecological speciation by considering its constituent components: an ecological source of divergent selection, a form of reproductive isolation, and a genetic mechanism linking the two. Sources of divergent selection include differences in environment or niche, certain forms of sexual selection, and the ecological interaction of populations. We explore the evidence for the contribution of each to ecological speciation. Forms of reproductive isolation are diverse and we discuss the likelihood that each may be involved in ecological speciation. Divergent selection on genes affecting ecological traits can be transmitted directly (via pleiotropy) or indirectly (via linkage disequilibrium) to genes causing reproductive isolation and we explore the consequences of both. Along with these components, we also discuss the geography and the genetic basis of ecological speciation. Throughout, we provide examples from nature, critically evaluate their quality, and highlight areas where more work is required.
Resumo:
Geographic variation in the advertisement call of the male Satin Bowerbird, Ptilonorhynchus violaceus, was investigated in three populations in south-eastern Queensland. The call was found to differ significantly among the three geographically distinct populations. A discriminant function analysis using five measurements of call frequency and duration provided 100% classification success of the 25 individuals. The observed geographic variation in this call may result from adaptation to the local acoustic environment in these populations, or from genetic or cultural divergence among populations. Further research involving the acoustic properties of the habitats, population genetics and a larger number of populations is required to fully understand this pattern of call variation.
Resumo:
Female choice based on multiple male traits has been documented in many species but the functions of such multiple traits are still under debate. The satin bowerbird has a polygynous mating system in which males attract females to bowers for mating; females choose mates based on multiple aspects of males and their bowers. In this paper, we demonstrate that females use some cues to decide which males to examine closely and other cues to decide which males to mate with. Female visitation rates to bowers were significantly related to male size and the males' 'solitary' display rates, and, to a lesser extent, to the numbers of bower decorations. After controlling for female visitation rates, it was found that a male's mating success was significantly related to his size and the rate at which he 'painted' his bower with saliva and chewed up plant material.
Resumo:
Animal color pattern phenotypes evolve rapidly. What influences their evolution? Because color patterns are used in communication, selection for signal efficacy, relative to the intended receiver's visual system, may explain and predict the direction of evolution. We investigated this in bowerbirds, whose color patterns consist of plumage, bower structure, and ornaments and whose visual displays are presented under predictable visual conditions. We used data on avian vision, environmental conditions, color pattern properties, and an estimate of the bowerbird phylogeny to test hypotheses about evolutionary effects of visual processing. Different components of the color pattern evolve differently. Plumage sexual dimorphism increased and then decreased, while overall (plumage plus bower) visual contrast increased. The use of bowers allows relative crypsis of the bird but increased efficacy of the signal as a whole. Ornaments do not elaborate existing plumage features but instead are innovations (new color schemes) that increase signal efficacy. Isolation between species could be facilitated by plumage but not ornaments, because we observed character displacement only in plumage. Bowerbird color pattern evolution is at least partially predictable from the function of the visual system and from knowledge of different functions of different components of the color patterns. This provides clues to how more constrained visual signaling systems may evolve.