780 resultados para Service-based
Resumo:
IEEE 802.16 network is widely viewed as a strong candidate solution for broadband wireless access systems. Various flexible mechanisms related to QoS provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the standards. Among the mechanisms, bandwidth request scheme can be used to indicate and request bandwidth demands to the base station for different services. Due to the diverse QoS requirements of the applications, service differentiation (SD) is desirable for the bandwidth request scheme. In this paper, we propose several SD approaches. The approaches are based on the contention-based bandwidth request scheme and achieved by the means of assigning different channel access parameters and/or bandwidth allocation priorities to different services. Additionally, we propose effective analytical model to study the impacts of the SD approaches, which can be used for the configuration and optimization of the SD services. It is observed from simulations that the analytical model has high accuracy. Service can be efficiently differentiated with initial backoff window in terms of throughput and channel access delay. Moreover, the service differentiation can be improved if combined with the bandwidth allocation priority approach without adverse impacts on the overall system throughput.
Resumo:
The need for global logistics services has increased dramatically and become extremely complex and dynamic as a result of a number of changes in manufacturing and in industrial production. In response, the logistics industry is changing in a variety of ways, including mergers to form integrated transportation service providers, outsourcing and increased use of information technology. The aim of this chapter is to provide an overview of the evolution and the most important trends in the logistics services provider (LSP) industry. Specific emphasis will be given to the role of Internet-based applications. Within this context, the chapter will also present the role of logistics e-marketplaces. In particular, based on the secondary research of currently existing logistics on-line marketplaces, an analysis and classification of them is provided with the aim of identifying service gaps. The analysis reveals that logistics electronic marketplaces, despite the increased range of services currently offered, still face limitations with reference to integrated customs links or translation services, which both reduce the efficiency of global operations.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Objectives: To develop a decision support system (DSS), myGRaCE, that integrates service user (SU) and practitioner expertise about mental health and associated risks of suicide, self-harm, harm to others, self-neglect, and vulnerability. The intention is to help SUs assess and manage their own mental health collaboratively with practitioners. Methods: An iterative process involving interviews, focus groups, and agile software development with 115 SUs, to elicit and implement myGRaCE requirements. Results: Findings highlight shared understanding of mental health risk between SUs and practitioners that can be integrated within a single model. However, important differences were revealed in SUs' preferred process of assessing risks and safety, which are reflected in the distinctive interface, navigation, tool functionality and language developed for myGRaCE. A challenge was how to provide flexible access without overwhelming and confusing users. Conclusion: The methods show that practitioner expertise can be reformulated in a format that simultaneously captures SU expertise, to provide a tool highly valued by SUs. A stepped process adds necessary structure to the assessment, each step with its own feedback and guidance. Practice Implications: The GRiST web-based DSS (www.egrist.org) links and integrates myGRaCE self-assessments with GRiST practitioner assessments for supporting collaborative and self-managed healthcare.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
In view of the increasingly complexity of services logic and functional requirements, a new system architecture based on SOA was proposed for the equipment remote monitoring and diagnosis system. According to the design principles of SOA, different levels and different granularities of services logic and functional requirements for remote monitoring and diagnosis system were divided, and a loosely coupled web services system was built. The design and implementation schedule of core function modules for the proposed architecture were presented. A demo system was used to validate the feasibility of the proposed architecture.
Resumo:
Our aim was to approach an important and well-investigable phenomenon – connected to a relatively simple but real field situation – in such a way, that the results of field observations could be directly comparable with the predictions of a simulation model-system which uses a simple mathematical apparatus and to simultaneously gain such a hypothesis-system, which creates the theoretical opportunity for a later experimental series of studies. As a phenomenon of the study, we chose the seasonal coenological changes of aquatic and semiaquatic Heteroptera community. Based on the observed data, we developed such an ecological model-system, which is suitable for generating realistic patterns highly resembling to the observed temporal patterns, and by the help of which predictions can be given to alternative situations of climatic circumstances not experienced before (e.g. climate changes), and furthermore; which can simulate experimental circumstances. The stable coenological state-plane, which was constructed based on the principle of indirect ordination is suitable for unified handling of data series of monitoring and simulation, and also fits for their comparison. On the state-plane, such deviations of empirical and model-generated data can be observed and analysed, which could otherwise remain hidden.
Resumo:
Using the NEODAAS-Dundee AVHRR receiving station (Scotland), NEODAAS-Plymouth can provide calibrated brightness temperature data to end users or interim users in near-real time. Between 2000 and 2009 these data were used to undertake volcano hot spot detection, reporting and time-average discharge rate dissemination during effusive crises at Mount Etna and Stromboli (Italy). Data were passed via FTP, within an hour of image generation, to the hot spot detection system maintained at Hawaii Institute of Geophysics and Planetology (HIGP, University of Hawaii at Manoa, Honolulu, USA). Final product generation and quality control were completed manually at HIGP once a day, so as to provide information to onsite monitoring agencies for their incorporation into daily reporting duties to Italian Civil Protection. We here describe the processing and dissemination chain, which was designed so as to provide timely, useable, quality-controlled and relevant information for ‘one voice’ reporting by the responsible monitoring agencies.
Resumo:
Using the NEODAAS-Dundee AVHRR receiving station (Scotland), NEODAAS-Plymouth can provide calibrated brightness temperature data to end users or interim users in near-real time. Between 2000 and 2009 these data were used to undertake volcano hot spot detection, reporting and time-average discharge rate dissemination during effusive crises at Mount Etna and Stromboli (Italy). Data were passed via FTP, within an hour of image generation, to the hot spot detection system maintained at Hawaii Institute of Geophysics and Planetology (HIGP, University of Hawaii at Manoa, Honolulu, USA). Final product generation and quality control were completed manually at HIGP once a day, so as to provide information to onsite monitoring agencies for their incorporation into daily reporting duties to Italian Civil Protection. We here describe the processing and dissemination chain, which was designed so as to provide timely, useable, quality-controlled and relevant information for ‘one voice’ reporting by the responsible monitoring agencies.
Resumo:
This study used a phenomenological research design to determine the difficulties faced in the science-based entrepreneur project development process for pre-service science teachers.. Qualitative data were obtained through interviews conducted with ten pre-service science teachers. The data were analysed using an inductive thematic analysis. The results indicated that pre-service science teachers have most difficulty ‘making decisions on one of the innovative ideas’ and ‘making predictions about unexpected situations’. They also have difficulties ‘calculating the cost as a result of design or work analysis’, ‘identifying if the idea already existed (similarity analysis)’ and ‘making decisions on the required materials, tools, services’. These results show the need for pre-service science teachers to communicate with other institutions and organisations.
Resumo:
Part 4: Transition Towards Product-Service Systems
Resumo:
The focus of this study is an in-service training program rooted in routines-based early intervention and designed to improve the quality of goals and objectives on individualized plans. Participants were local intervention team members and other professionals who worked closely with each team. This training program involved a small number of trainees per group, providing multiple learning experiences across time and various opportunities for self-assessment and monitoring. We investigated (a) the perceptions of the participants about the strengths and weaknesses of the training program, (b) medium-term outcomes of the training with a comparison group, (c) and variables associated with the quality of goals and objectives. This study involved training more than 200 professionals, and results support the effectiveness of the program in improving the quality of goals and objectives, showing the importance of the routines-based interview in producing that improvement.
Resumo:
With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.
Resumo:
The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.