945 resultados para Sentiment de contrôle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting the demand and supply activities. Our focus lies on sector-specific surveys targeting the players from the supply-side of both residential and non-residential real estate markets. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework, we test the efficacy of these indices by comparing them with other coincident indicators in predicting real estate returns. Overall, our analysis suggests that sentiment indicators convey important information which should be embedded in the modeling exercise to predict real estate market returns. Generally, sentiment indices show better information content than broad economic indicators. The goodness of fit of our models is higher for the residential market than for the non-residential real estate sector. The impulse responses, in general, conform to our theoretical expectations. Variance decompositions and out-of-sample predictions generally show desired contribution and reasonable improvement respectively, thus upholding our hypothesis. Quite remarkably, consistent with the theory, the predictability swings when we look through different phases of the cycle. This perhaps suggests that, e.g. during recessions, market players’ expectations may be more accurate predictor of the future performances, conceivably indicating a ‘negative’ information processing bias and thus conforming to the precautionary motive of consumer behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We look through both the demand and supply side information to understand dynamics of price determination in the real estate market and examine how accurately investors’ attitudes predict the market returns and thereby flagging off extent of any demand-supply mismatch. Our hypothesis is based on the possibility that investors’ call for action in terms of their buy/sell decision and adjustment in reservation/offer prices may indicate impending demand-supply imbalances in the market. In the process, we study several real estate sectors to inform our analysis. The timeframe of our analysis (1995-2010) allows us to observe market dynamics over several economic cycles and in various stages of those cycles. Additionally, we also seek to understand how investors’ attitude or the sentiment affects the market activity over the cycles through asymmetric responses. We test our hypothesis variously using a number of measures of market activity and attitude indicators within several model specifications. The empirical models are estimated using Vector Error Correction framework. Our analysis suggests that investors’ attitude exert strong and statistically significant feedback effects in price determination. Moreover, these effects do reveal heterogeneous responses across the real estate sectors. Interestingly, our results indicate the asymmetric responses during boom, normal and recessionary periods. These results are consistent with the theoretical underpinnings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate a number of real estate sentiment indices to ascertain current and forward-looking information content that may be useful for forecasting demand and supply activities. Analyzing the dynamic relationships within a Vector Auto-Regression (VAR) framework and using the quarterly US data over 1988-2010, we test the efficacy of several sentiment measures by comparing them with other coincident economic indicators. Overall, our analysis suggests that the sentiment in real estate convey valuable information that can help predict changes in real estate returns. These findings have important implications for investment decisions, from consumers' as well as institutional investors' perspectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The General Election for the 56th United Kingdom Parliament was held on 7 May 2015. Tweets related to UK politics, not only those with the specific hashtag ”#GE2015”, have been collected in the period between March 1 and May 31, 2015. The resulting dataset contains over 28 million tweets for a total of 118 GB in uncompressed format or 15 GB in compressed format. This study describes the method that was used to collect the tweets and presents some analysis, including a political sentiment index, and outlines interesting research directions on Big Social Data based on Twitter microblogging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article evaluates space closure mechanics efficiency in an extraction case where maximum anchorage was a requirement. The Segmented Arch Technique (SAT) was utilized as an anchorage control strategy to obtain maximum anterior retraction and, in consequence, significant facial profile change. A 20-year-10-month old woman needed severe labial and profile changes. The patient had four premolars extracted and SAT with type A mechanics [1] (Marcotte [2] activation protocol) was applied. The results showed significant reduction in labial protrusion and incisal angulation with effective anchorage control. The results were compared to others available in the literature derived from different techniques, where anterior retraction was also accomplished with maximum anchorage [3-7]. In conclusion, the SAT with type A mechanics has been shown to be another treatment option when significant changes in the soft-tissue profile are needed in extraction cases. © 2008. CEO. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progettazione di un sistema di Social Intelligence e Sentiment Analysis per un'azienda del settore consumer goods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gli ultimi anni hanno visto una crescita esponenziale nell’uso dei social media (recensioni, forum, discussioni, blog e social network); le persone e le aziende utilizzano sempre più le informazioni (opinioni e preferenze) pubblicate in questi mezzi per il loro processo decisionale. Tuttavia, il monitoraggio e la ricerca di opinioni sul Web da parte di un utente o azienda risulta essere un problema molto arduo a causa della proliferazione di migliaia di siti; in più ogni sito contiene un enorme volume di testo non sempre decifrabile in maniera ottimale (pensiamo ai lunghi messaggi di forum e blog). Inoltre, è anche noto che l’analisi soggettiva delle informazioni testuali è passibile di notevoli distorsioni, ad esempio, le persone tendono a prestare maggiore attenzione e interesse alle opinioni che risultano coerenti alle proprie attitudini e preferenze. Risulta quindi necessario l’utilizzo di sistemi automatizzati di Opinion Mining, per superare pregiudizi soggettivi e limitazioni mentali, al fine di giungere ad una metodologia di Sentiment Analysis il più possibile oggettiva.