622 resultados para Sensoriamento
Resumo:
O objetivo deste trabalho foi utilizar a classificação orientada a objetos em imagens TM/ Landsat‑5, para caracterizar classes de uso e cobertura da terra, na região do Médio Araguaia. A cena 223/068, adquirida em 5/9/2010, foi submetida a correção radiométrica, atmosférica e geométrica, como etapas de pré‑processamento. Em seguida, foram geradas duas imagens por meio das matemáticas de bandas espectrais do índice de vegetação por diferença normalizada (NDVI) e do índice de água por diferença normalizada modificado (MNDWI), utilizados na classificação de imagens. Para a segmentação destas, utilizaram-se os parâmetros de escala 250, 200, 150, 100, 50, os algoritmos "assign class" e "nearest neighbor", e os descritores de média, área e relação de borda. Foi empregada matriz de confusão, para avaliar a acurácia da classificação, por meio do coeficiente de exatidão global e do índice de concordância Kappa. A exatidão global para o mapeamento foi de 83,3%, com coeficiente Kappa de 0,72. A classificação foi feita quanto às fitofisionomias do Cerrado, ao uso antrópico e urbano da terra, a corpos d'água e a bancos de areia. As matemáticas de bandas espectrais utilizadas apresentam resultados promissores no delineamento das classes de cobertura da terra no Araguaia.
Correlação de variáveis espectrais e estoque de carbono da biomassa aérea de sistemas agroflorestais
Resumo:
O objetivo deste trabalho foi avaliar a correlação entre variáveis espectrais e o estoque de carbono da biomassa aérea de sistemas agroflorestais da região de Tomé‑Açu, PA. Foram testados 24 índices de vegetação de três grupos (razão simples, diferença normalizada e complexos), gerados a partir de imagens do sensor TM/Landsat‑5, adquiridas em 2008. As variáveis obtidas foram correlacionadas, por meio de regressão linear simples, ao estoque de carbono de quatro classes de sistemas agroflorestais, de diferentes idades e composições florísticas. As correlações obtidas entre as variáveis espectrais e o estoque de carbono foram significativas em 47% dos índices testados e variaram de acordo com as diferenças de biomassa nos sistemas analisados. As melhores correlações foram obtidas pelos índices de vegetação de razão simples e de diferença normalizada, em sistemas agroflorestais jovens, e pelos índices de vegetação complexos, em sistemas agroflorestais mais antigos.
Resumo:
O objetivo deste trabalho foi estimar e mapear as áreas com as culturas de soja e milho, no Paraná, com uso de imagens multitemporais EVI/Modis. Foram avaliados os anos‑safra de 2004/2005 a 2007/2008. Em razão da alta dinâmica temporal e da heterogeneidade de datas de semeadura das culturas no estado, foram utilizadas cenas que contemplavam as fases de pré‑plantio e de desenvolvimento inicial das culturas, para gerar a imagem de mínimo EVI (IMIE), e cenas que consideravam o pico vegetativo das culturas, para gerar a imagem de máximo EVI (IMAE). Estas imagens foram utilizadas para gerar a composição colorida RGB (R, IMAE; GB, IMIE), o que permitiu a confecção de máscara das áreas com soja e milho. As estimativas das áreas de máscara por município foram comparadas com dados oficiais de produção agrícola municipal, tendo-se observado bons ajustes (R²>0,84, d>0,95, c>0,85) entre os dados. Para a avaliação da exatidão espacial das máscaras, imagens Landsat‑5/TM e AWiFS/IRS foram usadas como referência para construção da matriz de erros. Os resultados obtidos são indicativos de que a metodologia proposta é altamente eficiente e pode ser utilizada para mapeamento dessas culturas.
Resumo:
O objetivo deste trabalho foi avaliar o desempenho do índice de vegetação realçado (EVI) e do índice de vegetação da diferença normalizada (NDVI) - ambos do sensor "moderate resolution imaging spectroradiometer" (Modis) -, para discriminar áreas de soja das áreas de cana‑de‑açúcar, pastagem, cerrado e floresta, no Estado do Mato Grosso. Foram utilizadas imagens adquiridas em dois períodos: durante a entressafra e por ocasião do pleno desenvolvimento da cultura da soja. Para cada classe analisada, foram selecionadas 31 amostras de mapas de referência e avaliadas as diferenças nos valores de cada índice de vegetação, para a classe soja, foram avaliadas frente às demais classes, por meio do teste de Tukey‑Kramer. Em seguida, foram avaliadas as diferenças entre os índices de vegetação, por meio do teste de Wilcoxon pareado. O NDVI apresentou melhor desempenho na discriminação das áreas de soja na entressafra, particularmente com uso das imagens do dia do ano (DA) 161 a 273, enquanto o EVI apresentou melhor desempenho no período de pleno desenvolvimento da cultura, especificamente com uso das imagens de DA 353 a 33. Portanto, o melhor resultado para classificação da soja, no Estado do Mato Grosso, via séries temporais do sensor Modis, pode ser obtida por meio do uso combinado do NDVI na entresssafra e do EVI no pleno desenvolvimento da soja.
Resumo:
O objetivo deste trabalho foi avaliar o mapeamento de área de cana‑de‑açúcar por meio de série temporal, de seis anos de dados do índice de vegetação por diferença normalizada (NDVI), oriundos do sensor Vegetation, a bordo do satélite "système pour l'observation de la Terre" (SPOT). Três classes de cobertura do solo (cana‑de‑açúcar, pasto e floresta), do Estado de São Paulo, foram selecionadas como assinaturas espectro‑temporais de referência, que serviram como membros extremos ("endmembers") para classificação com o algoritmo "spectral angle mapper" (SAM). A partir desta classificação, o mapeamento da área de cana‑de‑açúcar foi realizado com uso de limiares na imagem-regra do SAM, gerados a partir dos valores dos espectros de referência. Os resultados mostram que o algoritmo SAM pode ser aplicado a séries de dados multitemporais de resolução moderada, o que permite eficiente mapeamento de alvo agrícola em escala mesorregional. Dados oficiais de áreas de cana‑de‑açúcar, para as microrregiões paulistas, apresentam boa correlação (r² = 0,8) com os dados obtidos pelo método avaliado. A aplicação do algoritmo SAM mostrou ser útil em análises temporais. As séries temporais de NDVI do sensor SPOT Vegetation podem ser utilizadas para mapeamento da área de cana‑de‑açúcar em baixa resolução.
Resumo:
O objetivo deste trabalho foi avaliar os índices de vegetação e bandas do vermelho e do infravermelho próximo, gerados a partir dos sensores HRVIR, ETM+ e Modis, nas estimativas de índice de área foliar e produtividade da cultura do feijoeiro. O experimento foi realizado em blocos ao acaso, com parcelas subdivididas, com quatro lâminas de irrigação (179,5, 256,5, 357,5 e 406,2 mm), três doses de N (0,0, 80,0 e 160,0 kg ha-1) e quatro repetições. As medidas de reflectância foram obtidas com o Spetron SE-590, no estádio R6 da cultura, nas 48 parcelas. Foram testados: a razão simples, o índice de vegetação por diferença normalizada, índice de vegetação ajustado ao solo e índice de vegetação realçado. Os índices de vegetação foram eficientes na estimativa do índice de área foliar (IAF) e da produtividade da cultura do feijoeiro. Os índices de vegetação e a banda do infravermelho apresentam o mesmo potencial na estimativa do IAF, quando se considera a resolução espectral dos sensores Modis, ETM+ e HRVIR.
Resumo:
O objetivo deste trabalho foi avaliar o potencial da espectroscopia de reflectância no VIS-NIR-SWIR, para a caracterização granulométrica de amostras de solos de diferentes classes texturais, e obter modelos de predição dos teores de argila, silte e areia no solo. Utilizou-se um conjunto de amostras representativas de Latossolos e Argissolo de cinco locais do Estado do Mato Grosso do Sul. Os espectros do visível e do infravermelho próximo ao infravermelho de ondas curtas (de 350 a 2.500 nm) das amostras foram obtidos e analisados. Empregaram-se a análise de componentes principais (ACP), agrupamento por "fuzzy c-means", regressão logística multinomial (RLM) e regressão por mínimos quadrados parciais. Espectros característicos para as diferentes classes texturais e a segregação de amostras de classes texturais e de locais de coleta com características distintas, por meio da ACP, "fuzzy c-means" e RLM, mostram o potencial semiquantitativo dos dados de reflectância no VIS-NIR-SWIR. Obteve-se quantificação satisfatória quanto à argila (R²=0,92, RPD=3,59), ao silte (R²=0,80, RPD=2,15) e à areia (R²=0,87, RPD=2,62). As técnicas de espectroscopia de reflectância podem auxiliar na determinação da textura e da variabilidade espacial do solo com metodologias semiquantitativas ou quantitativas.
Resumo:
O objetivo deste trabalho foi ajustar modelos para estimar características dendrométricas da Caatinga brasileira a partir de dados do sensor TM do Landsat 5. Medidas de diâmetro e altura das árvores foram obtidas de 60 parcelas de inventário (400 m2), em dois municípios do Estado de Sergipe. A área basal e o volume de madeira foram estimados com uso de equação alométrica e de fator de forma (f = 0,9). As variáveis explicativas foram obtidas do sensor TM, após correção radiométrica e geométrica, tendo-se considerado, na análise, seis bandas espectrais, com resolução espacial de 30 m, além dos índices de razão simples (SR), de vegetação por diferença normalizada (NDVI) e de vegetação ajustado ao solo (Savi). Na escolha das melhores variáveis explicativas, foram considerados coeficiente de determinação (R2), raiz do erro quadrático médio (RMSE) e critério bayesiano de informação (CBI). A área basal por hectare não apresentou correlação significativa com nenhuma das variáveis explicativas utilizadas. Os melhores modelos foram ajustados à altura média das árvores por parcela (R2 = 0,4; RMSE = 13%) e ao volume de madeira por hectare (R2 = 0,6; RMSE = 42%). As métricas derivadas do sensor TM do Landsat 5 têm grande potencial para explicar variações de altura média das árvores e do volume de madeira por hectare, em remanescentes de Caatinga situados no Nordeste brasileiro.
Resumo:
O objetivo deste trabalho foi avaliar a possibilidade de se estimar o diâmetro à altura do peito (DAP) com os dados de altura e de número de árvores derivados do escâner a laser aerotransportado (LiDAR, "light detection and ranging"), e determinar o volume de madeira de talhão de Eucalyptus sp. a partir dessas variáveis. O número total de árvores detectadas foi obtido com uso da filtragem de máxima local. A altura de plantas estimada pelo LiDAR apresentou tendência não significativa à subestimativa. A estimativa do DAP foi coerente com os valores encontrados no inventário florestal; porém, também mostrou tendência à subestimativa, em razão do comportamento observado quanto à altura. A variável número de fustes apresentou valores próximos aos observados nas parcelas do inventário. O LiDAR subestimou o volume total de madeira do talhão em 11,4%, em comparação ao volume posto na fábrica. A tendência de subestimação da altura das árvores (em média, cerca de 5%) impactou a estimativa do volume individual de árvores e, consequentemente, a do volume do talhão. No entanto, é possível gerar equações de regressão que estimam o DAP com boa precisão, a partir de dados de altura de plantas obtidos pelo LiDAR. O modelo parabólico é o que possibilita as melhores estimativas da produção volumétrica dos talhões de eucalipto.
Resumo:
Resumo: O objetivo deste trabalho foi avaliar o desempenho dos classificadores digitais SVM e K-NN para a classificação orientada a objeto em imagens Landsat-8, aplicados ao mapeamento de uso e cobertura do solo da Alta Bacia do Rio Piracicaba-Jaguari, MG. A etapa de pré-processamento contou com a conversão radiométrica e a minimização dos efeitos atmosféricos. Em seguida, foi feita a fusão das bandas multiespectrais (30 m) com a banda pancromática (15 m). Com base em composições RGB e inspeções de campo, definiram-se 15 classes de uso e cobertura do solo. Para a segmentação de bordas, aplicaram-se os limiares 10 e 60 para as configurações de segmentação e união no aplicativo ENVI. A classificação foi feita usando SVM e K-NN. Ambos os classificadores apresentaram elevados valores de índice Kappa (k): 0,92 para SVM e 0,86 para K-NN, significativamente diferentes entre si a 95% de probabilidade. Uma significativa melhoria foi observada para SVM, na classificação correta de diferentes tipologias florestais. A classificação orientada a objetos é amplamente aplicada em imagens de alta resolução espacial; no entanto, os resultados obtidos no presente trabalho mostram a robustez do método também para imagens de média resolução espacial.
Resumo:
Resumo: O objetivo deste trabalho foi desenvolver um método para identificação e monitoramento, em tempo quase real, de áreas agrícolas cultivadas com lavouras temporárias de verão, com uso de imagens orbitais Modis, no Estado do Rio Grande do Sul. A metodologia foi denominada detecção de áreas agrícolas em tempo quase real (DATQuaR) e utiliza imagens do sensor Modis referentes aos índices de vegetação (IVs) EVI e NDVI, disponibilizadas em composições de 16 dias. Foram utilizadas quatro métricas para agregar os valores de IVs por pixel, dentro dos períodos bimensais avaliados: média, máximo, mínimo e mediana. Para gerar as imagens (ImDATQuaR), a imagem agregada para o período imediatamente anterior foi subtraída da imagem agregada para o período em monitoramento. Essas imagens foram classificadas por meio de fatiamento e comparadas às classes de referência obtidas pela interpretação visual de pixels aleatorizados em imagens Landsat. Cada ImDATQuaR gerou dois mapas DATQuaR: um com filtragem de moda com janela 3x3 pixels e outro sem filtragem. O melhor mapa DATQuaR é produzido com uso de imagens EVI e filtragem - ao se subtrair a imagem de mínimo valor para o período anterior da imagem de máximo valor para o período monitorado - e atinge concordâncias com a referência superiores a 81%.
Resumo:
Resumo:O objetivo deste trabalho foi avaliar a eficácia da aplicação de modelos de análise de regressão e redes neurais artificiais (RNAs) na predição do volume de madeira e da biomassa acima do solo, da vegetação arbórea em área de cerradão. Volume de madeira e biomassa foram estimados com equações alométricas desenvolvidas para a área de estudo. Os índices de vegetação, como variáveis preditoras, foram estimados a partir de imagens do sensor LISS-III, e a área basal foi determinada por medições na floresta. A precisão das equações foi verificada pela correlação entre os valores estimados e observados (r), erro-padrão da estimativa (Syx) e gráfico residual. As equações de regressão para o volume de madeira total e do fuste (0,96 e 0,97 para r, e 11,92 e 9,72% para Syx, respectivamente) e para a biomassa (0,91 e 0,92 para r, e 22,73 e 16,80% para Syx, respectivamente) apresentaram bons ajustes. As redes neurais também apresentaram bom ajuste com o volume de madeira (0,99 e 0,99 para r, e 4,93 e 4,83% para Syx) e a biomassa (0,97 e 0,98 r, e 8,92 e 7,96% para Syx, respectivamente). A área basal e os índices de vegetação foram eficazes na estimativa do volume de madeira e biomassa para o cerradão. Os valores reais de volume de madeira e biomassa não diferiram estatisticamente dos valores estimados pelos modelos de regressão e redes neurais (χ2ns); contudo, as RNAs são mais acuradas.
Resumo:
No presente trabalho, foram utilizadas tecnologias geoespaciais visando a auxiliar o gerenciamento e o manejo da cultura da maçã. Um GPS de navegação foi utilizado para delimitar 201 quadras de maçã na Fazenda Rio Verde situada no município de Fraiburgo-SC. As coordenadas dos pontos (waypoints) foram introduzidas num sistema de informações geográficas (SIG), obtendo-se um mapa com a distribuição dos limites das quadras de maçã. Estes limites foram associados a um banco de dados contendo informações cadastrais, tais como: variedade, data de plantio e área. Imagens do sensor ETM+ do satélite Landsat-7, adquiridas em 07 de janeiro de 2000 e 05 de agosto de 2001, foram utilizadas para mapear o uso e ocupação do solo nas áreas restantes da fazenda. O tamanho das quadras de maçã variou entre 0,14 e 5,32 ha. Uma comparação entre a área das quadras estimada pelo GPS de navegação e a área estimada a partir do número de plantas, multiplicado pela área ocupada por planta, apresentou um coeficiente de correlação r=0,97. As classes de uso e ocupação do solo foram: açude, banhado, mato, capoeira, lavoura e reflorestamento. De acordo com os resultados alcançados nesta pesquisa, pode-se chegar às seguintes conclusões: a) o uso do GPS de navegação mostrou-se viável para a obtenção do mapa com o limite das quadras de maçã; b) as imagens do Landsat permitiram identificar as diferentes classes de uso e ocupação do solo; c) o SIG associado a um banco de dados é uma importante ferramenta de gerenciamento das atividades da fruticultura em quadras.
Resumo:
O ataque do nematóide de cisto da soja, Heterodera glycines, limita o potencial de expansão e maior produtividade de áreas plantadas com soja (Glycine Max). O conhecimento da distribuição espacial desse patógeno na lavoura é fundamental, para elaboração de estratégias de manejo. A área em estudo estava localizada em lavoura de soja, variedade BRS133, localizada no Município de Florínea, SP, com solos naturalmente infestados por H. glycines. Foram obtidas medidas de espectrorradiometria de campo, 112 dias após o plantio, nas regiões do visível e do infravermelho próximo do espectro eletromagnético, a fim de se conhecer o padrão da resposta espectral de plantas atacadas pelo fitonematóide. Paralelamente, foram retiradas amostras de solo e encaminhadas ao Laboratório de Nematologia, Departamento de Fitossanidade da Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Jaboticabal, onde foram processadas para determinação da densidade populacional do nematóide. As medidas do espectrorradiômetro foram transformadas em índice vegetativo, com diferença normalizada (NDVI), que foi relacionado com a densidade populacional do nematóide, peso da matéria fresca e número de vagens por planta. Observou-se que diferentes densidades de população estão diretamente relacionados com a resposta espectral das plantas expressa, através dos valores do NDVI.
Resumo:
Medidas de refletância têm apresentado resultados eficientes para avaliar a eficiência de fungicidas, além de ser um método prático e rápido. O objetivo do trabalho foi comparar medidas de refletância com o método de avaliação visual para avaliar a eficiência de fungicidas no controle da ferrugem asiática da soja e quantificar a relação com a produtividade. O ensaio foi instalado na Fazenda Escola da UEL, cv. BRS 133, em delineamento de blocos ao acaso com 07 diferentes fungicidas, em 04 repetições. Foram realizadas duas pulverizações, sendo a 1º no estádio R2 (3% de severidade) e a segunda em R5.1, 20 dias após. Avaliou-se visualmente a severidade de ferrugem asiática e calculou-se a área abaixo da curva de progresso da doença (AACPD). Também, avaliou-se a produtividade final e a percentagem de radiação solar em 810 nm (R810) com o uso de radiômetro de multiespectro e calculou-se a área abaixo da curva de progresso da radiação (AACPR). O coeficiente de determinação (R2) para regressão entre as variáveis AACPD x produtividade foi 0,79, entre AACPR x produtividade foi 0,90 e AACPD x AACPR foi 0,89. A utilização de refletância (R810) permitiu a separação dos tratamentos fungicidas em três grupos distintos, sendo epoxiconazol com menor eficiência, metconazol, tebuconazol e piraclostrobina + epoxiconazol foram classificados como intermediários e os mais eficientes foram, azoxistrobina + ciproconazol e picoxistrobina + ciproconazol.