980 resultados para Sensitivity Check Index
Resumo:
In this letter, we present a standard linear cavity fiber laser incorporating a microchannel for refractive index (RI) and temperature sensing. The microchannel of ~6µm width created by femtosecond laser aided chemical etching provides an access to the external liquid; therefore, the laser cavity loss changes with the liquids of different RIs. Thus, at a fixed pump power, the output laser power will vary with the change of RI in the microchannel. The results show that the proposed sensing system has a linear response to both the surrounding medium RI and temperature. The RI sensitivity of the laser system is on the order of 10-3, while the temperature sensitivity is about 0.02 C. Both sensitivities could be further enhanced by employing a more sensitive photodetector and using higher pump power.
Resumo:
In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.
Resumo:
In this paper we have done back to back comparison of quantitive phase and refractive index from a microscopic image of waveguide previously obtained by Allsop et al. Paper also shows microscopic image of the first 3 waveguides from the sample. Tomlins et al. have demonstrated use of femtosecond fabricated artefacts as OCT calibration samples. Here we present the use of femtosecond waveguides, inscribed with optimized parameters, to test and calibrate the sensitivity of the OCT systems.
Resumo:
We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.
Resumo:
A dual-parameter optical sensor has been realized by UV-writing a long-period and a Bragg grating structure in D-fiber. The hybrid configuration permits the detection of the temperature from the latter and measuring the external refractive index from the former responses, respectively. The employment of the D-fiber allows as effective modification and enhancement of the device sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.01%.
Resumo:
We report here the fabrication, charaterisation and refractive index sensing of two microchanneled chirped fiber Bragg gratings (MCFBGs) with different channel sizes (~550µm and ~1000µm). The chirped grating structures were UV-inscribed in optical fibre and the microchannels were created in the middle of the CFBGs by femtosecond (fs) laser assisted chemical etching method. The creation of microchannels in the CFBG structures gives an access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In comparison with previously reported FBG based RI sensors, for which the cladding layers usually were removed, the MCFBGs represent a more ideal solution for robust devices as the microchannel will not degrade the structure strength. The two MCFBGs were spectrally charaterised for their RI and temperature responses and both gratings exhibited unique thermal and RI sensitivities, which may be utilised for implementation of bio-chemical sensors with capability to eliminate temperature crosssensitivity.
Resumo:
Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.
Resumo:
Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.
Resumo:
The microchannelled chirped fibre Bragg grating (MCFBG) was fabricated using femtosecond laser processing and HF-etching. Intrinsical refractive-index sensitivity induced by the microchannel makes MCFBGs ideal for biochemical sensing.
Resumo:
Long period gratings (LPGs) were written into a progressive three-layered (PTL) monomode optical fiber. The spectral sensitivity was experimentally measured with respect to temperature and the surrounding refractive index, and compared with theoretical predictions. The behavior of the devices suggests that this type of fiber may be useful as a means of reducing the sensitivity of LPGs to the surrounding medium and for simultaneous temperature and refractive index sensing.
Resumo:
A long period fibre grating written in progressive three layered optical fibre was examined. The bending sensitivity of the optical fibre was measured. It was found that the fibre shows an attenuation band that has a very low bending sensitivity compared to normal step-index fibres.
Resumo:
A novel and simple optical chemsensor concept based on cladding etched Bragg gratings UV-inscribed in D-fibre is reported. The sensitisation process of the Bragg structure to the refractive index of surrounding-medium under HF-etching has been investigated. Two etched devices were used to measure the concentrations of sugar solution, giving sensitivity as high as 0.02 nm/%.
Resumo:
A novel implementation of an optical chemsensor device is reported based on long-period fiber grating structures ultraviolet-inscribed in D-fiber, with sensitivity enhancement by cladding etching. The results of a comparative study using D-fiber devices and similar structures in standard optical fiber reveal that the D-fiber devices offer substantially greater sensitivity both with and without etching. Based on a calibrated response to changes in refractive index, the grating devices have been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.2%.
Resumo:
The fabrication and characterization of long-period gratings (LPGs) in fiber tapers is presented alongside supporting theory. The devices possess a high sensitivity to the index of aqueous solutions due to an observed spectral bifurcation effect, yielding a limiting index resolution of ±8.5 × 10-5 for solutions with an index in the range 1.330-1.335. © 2006 IEEE.
Resumo:
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of -3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m-1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10-2 m-1 for curvature and ±5 × 10-2 °C for temperature.