964 resultados para Semi-parametric estimation
Resumo:
This paper deals with the estimation and testing of conditional duration models by looking at the density and baseline hazard rate functions. More precisely, we foeus on the distance between the parametric density (or hazard rate) function implied by the duration process and its non-parametric estimate. Asymptotic justification is derived using the functional delta method for fixed and gamma kernels, whereas finite sample properties are investigated through Monte Carlo simulations. Finally, we show the practical usefulness of such testing procedures by carrying out an empirical assessment of whether autoregressive conditional duration models are appropriate to oIs for modelling price durations of stocks traded at the New York Stock Exchange.
Resumo:
This paper provides a systematic and unified treatment of the developments in the area of kernel estimation in econometrics and statistics. Both the estimation and hypothesis testing issues are discussed for the nonparametric and semiparametric regression models. A discussion on the choice of windowwidth is also presented.
Resumo:
The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.
Resumo:
The main specie of marine shrimp raised at Brazil and in the world is Litopenaeus vannamei, which had arrived in Brazil in the `80s. However, the entry of infectious myonecrosis virus (IMNV), causing the infectious myonecrosis disease in marine shrimps, brought economic losses to the national shrimp farming, with up to 70% of mortality in the shrimp production. In this way, the objective was to evaluate the survival of shrimps Litopenaeus vannamei infected with IMNV using the non parametric estimator of Kaplan-Meier and a model of frailty for grouped data. It were conducted three tests of viral challenges lasting 20 days each, at different periods of the year, keeping the parameters of pH, temperature, oxygen and ammonia monitored daily. It was evaluated 60 full-sib families of L. vannamei infected by IMNV in each viral challenge. The confirmation of the infection by IMNV was performed using the technique of PCR in real time through Sybr Green dye. Using the Kaplan-Meier estimator it was possible to detect significant differences (p <0.0001) between the survival curves of families and tanks and also in the joint analysis between viral challenges. It were estimated in each challenge, genetic parameters such as genetic value of family, it`s respective rate risk (frailty), and heritability in the logarithmic scale through the frailty model for grouped data. The heritability estimates were respectively 0.59; 0.36; and 0.59 in the viral challenges 1; 2; and 3, and it was also possible to identify families that have lower and higher rates of risk for the disease. These results can be used for selecting families more resistant to the IMNV infection and to include characteristic of disease resistance in L. vannamei into the genetic improvement programs
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.
Resumo:
Parametric VaR (Value-at-Risk) is widely used due to its simplicity and easy calculation. However, the normality assumption, often used in the estimation of the parametric VaR, does not provide satisfactory estimates for risk exposure. Therefore, this study suggests a method for computing the parametric VaR based on goodness-of-fit tests using the empirical distribution function (EDF) for extreme returns, and compares the feasibility of this method for the banking sector in an emerging market and in a developed one. The paper also discusses possible theoretical contributions in related fields like enterprise risk management (ERM). © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Accidents involving insects of the Hymenoptera order occur very often with both human beings and domestic pets and, in Brazil, they include aggravated cases with Africanized bees (Apis mellifera). The aggravation of deforestation and the lack of awareness regarding the subject are factors that contribute to the rise of the number of bees in the urban environment. This fact has been causing several derangements among the population because, once these insects are bothered, they become very aggressive. Considering the risks to population and the great amount of accidents that could be avoided, the development of researches with the goal of determining repelling substances is rather important. Therefore, this research evaluated the repelling action of essential natural oils obtained from rosemary (Rosmarinus oficinalis), lemongrass (Cymbopogon citratus), thyme (Thymus vulgaris), cedar (Juniperus virginiana), clove (Syzygium aromaticum) and mint (Mentha piperita) on A. mellifera Africanized worker bees in both semi-field and aggressiveness tests. Among the evaluated composites, the lemongrass, mint and clove essential natural oils presented a grater repelling effect, inhibiting the bees’ visitation to the managed feeders almost completely. The cedar essential natural oil was the least effective composite, and the rest of the tested oils presented satisfactory repellency, which became less effective over time, according to non-parametric Mann-Whitney test. However, further tests showed that only the lemongrass essential natural oil caused a less aggressive response from the bees, which can confirm the repelling power of this composite. This way, according to the results obtained through this research, lemongrass presents a greater potential to the development of effective repelling formulas against Africanized bees (Apis mellifera)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A robotic control design considering all the inherent nonlinearities of the robot engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case 1: For control positioning, it is only used motor voltage; Case 2: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.
Resumo:
Abstract Background For analyzing longitudinal familial data we adopted a log-linear form to incorporate heterogeneity in genetic variance components over the time, and additionally a serial correlation term in the genetic effects at different levels of ages. Due to the availability of multiple measures on the same individual, we permitted environmental correlations that may change across time. Results Systolic blood pressure from family members from the first and second cohort was used in the current analysis. Measures of subjects receiving hypertension treatment were set as censored values and they were corrected. An initial check of the variance and covariance functions proposed for analyzing longitudinal familial data, using empirical semi-variogram plots, indicated that the observed trait dispersion pattern follows the assumptions adopted. Conclusion The corrections for censored phenotypes based on ordinary linear models may be an appropriate simple model to correct the data, ensuring that the original variability in the data was retained. In addition, empirical semi-variogram plots are useful for diagnosis of the (co)variance model adopted.
Resumo:
The objective of this work of thesis is the refined estimations of source parameters. To such a purpose we used two different approaches, one in the frequency domain and the other in the time domain. In frequency domain, we analyzed the P- and S-wave displacement spectra to estimate spectral parameters, that is corner frequencies and low frequency spectral amplitudes. We used a parametric modeling approach which is combined with a multi-step, non-linear inversion strategy and includes the correction for attenuation and site effects. The iterative multi-step procedure was applied to about 700 microearthquakes in the moment range 1011-1014 N•m and recorded at the dense, wide-dynamic range, seismic networks operating in Southern Apennines (Italy). The analysis of the source parameters is often complicated when we are not able to model the propagation accurately. In this case the empirical Green function approach is a very useful tool to study the seismic source properties. In fact the Empirical Green Functions (EGFs) consent to represent the contribution of propagation and site effects to signal without using approximate velocity models. An EGF is a recorded three-component set of time-histories of a small earthquake whose source mechanism and propagation path are similar to those of the master event. Thus, in time domain, the deconvolution method of Vallée (2004) was applied to calculate the source time functions (RSTFs) and to accurately estimate source size and rupture velocity. This technique was applied to 1) large event, that is Mw=6.3 2009 L’Aquila mainshock (Central Italy), 2) moderate events, that is cluster of earthquakes of 2009 L’Aquila sequence with moment magnitude ranging between 3 and 5.6, 3) small event, i.e. Mw=2.9 Laviano mainshock (Southern Italy).
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.