976 resultados para Semantic Search
Resumo:
The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.
Resumo:
Due to the explosive growth of the Web, the domain of Web personalization has gained great momentum both in the research and commercial areas. One of the most popular web personalization systems is recommender systems. In recommender systems choosing user information that can be used to profile users is very crucial for user profiling. In Web 2.0, one facility that can help users organize Web resources of their interest is user tagging systems. Exploring user tagging behavior provides a promising way for understanding users’ information needs since tags are given directly by users. However, free and relatively uncontrolled vocabulary makes the user self-defined tags lack of standardization and semantic ambiguity. Also, the relationships among tags need to be explored since there are rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach for learning tag ontology based on the widely used lexical database WordNet for capturing the semantics and the structural relationships of tags. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. To personalize further, clustering of users is performed to generate a more accurate ontology for a particular group of users. In order to evaluate the usefulness of the tag ontology, we use the tag ontology in a pilot tag recommendation experiment for improving the recommendation performance by exploiting the semantic information in the tag ontology. The initial result shows that the personalized information has improved the accuracy of the tag recommendation.
Resumo:
The aim of this paper is to provide a comparison of various algorithms and parameters to build reduced semantic spaces. The effect of dimension reduction, the stability of the representation and the effect of word order are examined in the context of the five algorithms bearing on semantic vectors: Random projection (RP), singular value decom- position (SVD), non-negative matrix factorization (NMF), permutations and holographic reduced representations (HRR). The quality of semantic representation was tested by means of synonym finding task using the TOEFL test on the TASA corpus. Dimension reduction was found to improve the quality of semantic representation but it is hard to find the optimal parameter settings. Even though dimension reduction by RP was found to be more generally applicable than SVD, the semantic vectors produced by RP are somewhat unstable. The effect of encoding word order into the semantic vector representation via HRR did not lead to any increase in scores over vectors constructed from word co-occurrence in context information. In this regard, very small context windows resulted in better semantic vectors for the TOEFL test.
Resumo:
This research paper explores the impact product personalisation has upon product attachment and aims to develop a deeper understanding of why, how and if consumers choose to do so. The current research in this field is mainly based on attachment theories and is predominantly product specific. This paper researches the link between product attachment and personalisation through in-depth, semi-structured interviews, where the data has been thematically analysed and broken down into three themes, and nine sub-themes. It was found that participants did become more attached to products once they were personalised and the reasons why this occurred varied. The most common reasons that led to personalisation were functionality and usability, the expression of personality through a product and the complexity of personalisation. The reasons why participants felt connected to their products included strong emotions/memories, the amount of time and effort invested into the personalisation, a sense of achievement. Reasons behind the desire for personalisation included co-designing, expression of uniqueness/individualism and having choice for personalisation. Through theme and inter-theme relationships, many correlations were formed, which created the basis for design recommendations. These recommendations demonstrate how a designer could implement the emotions and reasoning for personalisation into the design process.
Resumo:
Can China improve the competitiveness of its culture in world markets? Should it focus less on quantity and more on quality? How should Chinese cultural producers and distributors target audiences overseas? These are important questions facing policy makers today. In this paper I investigate how China might best deploy its soft power capabilities: for instance, should it try to demonstrate that it is a creative, innovative nation, capable of original ideas? Or should it put the emphasis on validating its credentials as an enduring culture and civilisation? In order to investigate these questions I introduce the cultural innovation timeline, a model that explains how China is adding value. There are six stages in the timeline but I will focus in particular on how the timeline facilitates cultural trade. In the second part of the paper I look at some of the challenges facing China, particularly the reception of its cultural products in international markets.
Resumo:
Finding and labelling semantic features patterns of documents in a large, spatial corpus is a challenging problem. Text documents have characteristics that make semantic labelling difficult; the rapidly increasing volume of online documents makes a bottleneck in finding meaningful textual patterns. Aiming to deal with these issues, we propose an unsupervised documnent labelling approach based on semantic content and feature patterns. A world ontology with extensive topic coverage is exploited to supply controlled, structured subjects for labelling. An algorithm is also introduced to reduce dimensionality based on the study of ontological structure. The proposed approach was promisingly evaluated by compared with typical machine learning methods including SVMs, Rocchio, and kNN.
Resumo:
Due to the development of XML and other data models such as OWL and RDF, sharing data is an increasingly common task since these data models allow simple syntactic translation of data between applications. However, in order for data to be shared semantically, there must be a way to ensure that concepts are the same. One approach is to employ commonly usedschemas—called standard schemas —which help guarantee that syntactically identical objects have semantically similar meanings. As a result of the spread of data sharing, there has been widespread adoption of standard schemas in a broad range of disciplines and for a wide variety of applications within a very short period of time. However, standard schemas are still in their infancy and have not yet matured or been thoroughly evaluated. It is imperative that the data management research community takes a closer look at how well these standard schemas have fared in real-world applications to identify not only their advantages, but also the operational challenges that real users face. In this paper, we both examine the usability of standard schemas in a comparison that spans multiple disciplines, and describe our first step at resolving some of these issues in our Semantic Modeling System. We evaluate our Semantic Modeling System through a careful case study of the use of standard schemas in architecture, engineering, and construction, which we conducted with domain experts. We discuss how our Semantic Modeling System can help the broader problem and also discuss a number of challenges that still remain.
Resumo:
A genome-wide search for markers associated with BSE incidence was performed by using Transmission-Disequilibrium Tests (TDTs). Significant segregation distortion, i.e., unequal transmission probabilities of alleles within a locus, was found for three marker loci on Chromosomes (Chrs) 5, 10, and 20. Although TDTs are robust to false associations owing to hidden population substructures, it cannot distinguish segregation distortion caused by a true association between a marker and bovine spongiform encephalopathy (BSE) from a population-wide distortion. An interaction test and a segregation distortion analysis in half-sib controls were used to disentangle these two alternative hypotheses. None of the markers showed any significant interaction between allele transmission rates and disease status, and only the marker on Chr 10 showed a significant segregation distortion in control individuals. Nevertheless, the control group may have been a mixture of resistant and susceptible but unchallenged individuals. When new genotypes were generated in the vicinity of these three markers, evidence for an association with BSE was confirmed for the locus on Chr 5.
Resumo:
Modelling how a word is activated in human memory is an important requirement for determining the probability of recall of a word in an extra-list cueing experiment. Previous research assumed a quantum-like model in which the semantic network was modelled as entangled qubits, however the level of activation was clearly being over-estimated. This paper explores three variations of this model, each of which are distinguished by a scaling factor designed to compensate the overestimation.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
Building and maintaining software are not easy tasks. However, thanks to advances in web technologies, a new paradigm is emerging in software development. The Service Oriented Architecture (SOA) is a relatively new approach that helps bridge the gap between business and IT and also helps systems remain exible. However, there are still several challenges with SOA. As the number of available services grows, developers are faced with the problem of discovering the services they need. Public service repositories such as Programmable Web provide only limited search capabilities. Several mechanisms have been proposed to improve web service discovery by using semantics. However, most of these require manually tagging the services with concepts in an ontology. Adding semantic annotations is a non-trivial process that requires a certain skill-set from the annotator and also the availability of domain ontologies that include the concepts related to the topics of the service. These issues have prevented these mechanisms becoming widespread. This thesis focuses on two main problems. First, to avoid the overhead of manually adding semantics to web services, several automatic methods to include semantics in the discovery process are explored. Although experimentation with some of these strategies has been conducted in the past, the results reported in the literature are mixed. Second, Wikipedia is explored as a general-purpose ontology. The benefit of using it as an ontology is assessed by comparing these semantics-based methods to classic term-based information retrieval approaches. The contribution of this research is significant because, to the best of our knowledge, a comprehensive analysis of the impact of using Wikipedia as a source of semantics in web service discovery does not exist. The main output of this research is a web service discovery engine that implements these methods and a comprehensive analysis of the benefits and trade-offs of these semantics-based discovery approaches.
Resumo:
Least developed countries (LDCs) are the primary victims of environmental changes, including present and future impacts of climate change. Environmental degradation poses a serious threat to the conservation and sustainable use of natural resources, thus hindering development in LDCs. Simultaneously, poverty is itself both a major cause and effect of global environmental problems. Against this backdrop, this essay argues that without recognition and protection of a collective right to development, genuine environmental protection will remain unachievable. Further, this essay submits that, particularly in the context of LDCs, the right to environment and the right to development are inseparable. Finally, this essay argues that the relationship between the right to environment and the right to development must fall within the paradigm of sustainable development if the promotion and protection of those rights are to be justified.
Resumo:
The rapid growth of visual information on Web has led to immense interest in multimedia information retrieval (MIR). While advancement in MIR systems has achieved some success in specific domains, particularly the content-based approaches, general Web users still struggle to find the images they want. Despite the success in content-based object recognition or concept extraction, the major problem in current Web image searching remains in the querying process. Since most online users only express their needs in semantic terms or objects, systems that utilize visual features (e.g., color or texture) to search images create a semantic gap which hinders general users from fully expressing their needs. In addition, query-by-example (QBE) retrieval imposes extra obstacles for exploratory search because users may not always have the representative image at hand or in mind when starting a search (i.e. the page zero problem). As a result, the majority of current online image search engines (e.g., Google, Yahoo, and Flickr) still primarily use textual queries to search. The problem with query-based retrieval systems is that they only capture users’ information need in terms of formal queries;; the implicit and abstract parts of users’ information needs are inevitably overlooked. Hence, users often struggle to formulate queries that best represent their needs, and some compromises have to be made. Studies of Web search logs suggest that multimedia searches are more difficult than textual Web searches, and Web image searching is the most difficult compared to video or audio searches. Hence, online users need to put in more effort when searching multimedia contents, especially for image searches. Most interactions in Web image searching occur during query reformulation. While log analysis provides intriguing views on how the majority of users search, their search needs or motivations are ultimately neglected. User studies on image searching have attempted to understand users’ search contexts in terms of users’ background (e.g., knowledge, profession, motivation for search and task types) and the search outcomes (e.g., use of retrieved images, search performance). However, these studies typically focused on particular domains with a selective group of professional users. General users’ Web image searching contexts and behaviors are little understood although they represent the majority of online image searching activities nowadays. We argue that only by understanding Web image users’ contexts can the current Web search engines further improve their usefulness and provide more efficient searches. In order to understand users’ search contexts, a user study was conducted based on university students’ Web image searching in News, Travel, and commercial Product domains. The three search domains were deliberately chosen to reflect image users’ interests in people, time, event, location, and objects. We investigated participants’ Web image searching behavior, with the focus on query reformulation and search strategies. Participants’ search contexts such as their search background, motivation for search, and search outcomes were gathered by questionnaires. The searching activity was recorded with participants’ think aloud data for analyzing significant search patterns. The relationships between participants’ search contexts and corresponding search strategies were discovered by Grounded Theory approach. Our key findings include the following aspects: - Effects of users' interactive intents on query reformulation patterns and search strategies - Effects of task domain on task specificity and task difficulty, as well as on some specific searching behaviors - Effects of searching experience on result expansion strategies A contextual image searching model was constructed based on these findings. The model helped us understand Web image searching from user perspective, and introduced a context-aware searching paradigm for current retrieval systems. A query recommendation tool was also developed to demonstrate how users’ query reformulation contexts can potentially contribute to more efficient searching.
Resumo:
In this paper we propose a method to generate a large scale and accurate dense 3D semantic map of street scenes. A dense 3D semantic model of the environment can significantly improve a number of robotic applications such as autonomous driving, navigation or localisation. Instead of using offline trained classifiers for semantic segmentation, our approach employs a data-driven, nonparametric method to parse scenes which easily scale to a large environment and generalise to different scenes. We use stereo image pairs collected from cameras mounted on a moving car to produce dense depth maps which are combined into a global 3D reconstruction using camera poses from stereo visual odometry. Simultaneously, 2D automatic semantic segmentation using a nonparametric scene parsing method is fused into the 3D model. Furthermore, the resultant 3D semantic model is improved with the consideration of moving objects in the scene. We demonstrate our method on the publicly available KITTI dataset and evaluate the performance against manually generated ground truth.