951 resultados para Self-organizing networks


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los aportes teóricos y aplicados de la complejidad en economía han tomado tantas direcciones y han sido tan frenéticos en las últimas décadas, que no existe un trabajo reciente, hasta donde conocemos, que los compile y los analice de forma integrada. El objetivo de este proyecto, por tanto, es desarrollar un estado situacional de las diferentes aplicaciones conceptuales, teóricas, metodológicas y tecnológicas de las ciencias de la complejidad en la economía. Asimismo, se pretende analizar las tendencias recientes en el estudio de la complejidad de los sistemas económicos y los horizontes que las ciencias de la complejidad ofrecen de cara al abordaje de los fenómenos económicos del mundo globalizado contemporáneo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La idea básica de detección de defectos basada en vibraciones en Monitorización de la Salud Estructural (SHM), es que el defecto altera las propiedades de rigidez, masa o disipación de energía de un sistema, el cual, altera la respuesta dinámica del mismo. Dentro del contexto de reconocimiento de patrones, esta tesis presenta una metodología híbrida de razonamiento para evaluar los defectos en las estructuras, combinando el uso de un modelo de la estructura y/o experimentos previos con el esquema de razonamiento basado en el conocimiento para evaluar si el defecto está presente, su gravedad y su localización. La metodología involucra algunos elementos relacionados con análisis de vibraciones, matemáticas (wavelets, control de procesos estadístico), análisis y procesamiento de señales y/o patrones (razonamiento basado en casos, redes auto-organizativas), estructuras inteligentes y detección de defectos. Las técnicas son validadas numérica y experimentalmente considerando corrosión, pérdida de masa, acumulación de masa e impactos. Las estructuras usadas durante este trabajo son: una estructura tipo cercha voladiza, una viga de aluminio, dos secciones de tubería y una parte del ala de un avión comercial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Facilitating the visual exploration of scientific data has received increasing attention in the past decade or so. Especially in life science related application areas the amount of available data has grown at a breath taking pace. In this paper we describe an approach that allows for visual inspection of large collections of molecular compounds. In contrast to classical visualizations of such spaces we incorporate a specific focus of analysis, for example the outcome of a biological experiment such as high throughout screening results. The presented method uses this experimental data to select molecular fragments of the underlying molecules that have interesting properties and uses the resulting space to generate a two dimensional map based on a singular value decomposition algorithm and a self organizing map. Experiments on real datasets show that the resulting visual landscape groups molecules of similar chemical properties in densely connected regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past decade, the amount of data in biological field has become larger and larger; Bio-techniques for analysis of biological data have been developed and new tools have been introduced. Several computational methods are based on unsupervised neural network algorithms that are widely used for multiple purposes including clustering and visualization, i.e. the Self Organizing Maps (SOM). Unfortunately, even though this method is unsupervised, the performances in terms of quality of result and learning speed are strongly dependent from the neuron weights initialization. In this paper we present a new initialization technique based on a totally connected undirected graph, that report relations among some intersting features of data input. Result of experimental tests, where the proposed algorithm is compared to the original initialization techniques, shows that our technique assures faster learning and better performance in terms of quantization error.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to generate very stable assemblies via non-covalent interactions has enabled materials to be constructed that were not feasible via traditional covalent bond formation processes. A series of low molecular mass bisurethane and bisurea polymers have been developed that form stable self-assembled networks through hydrogen bonding interactions. Thermo-responsive polymers were generated by end-capping poly(ethylene-co-butylene) or polybutadiene chains with the bisurethane or bisurea motif. Microphase separation is observed via TEM and small-angle X-ray scattering (SAXS) for the modified pseudo polymers and significant differences in the temperature dependence of microphase separation are analysed via SAXS. The importance of the polarity of the end groups is manifested in distinct temperature-dependent microphase separation behaviour. Information on the local hydrogen bonding structure is provided by wide-angle X-ray scattering and variable temperature FTI

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have discovered a novel approach of intrusion detection system using an intelligent data classifier based on a self organizing map (SOM). We have surveyed all other unsupervised intrusion detection methods, different alternative SOM based techniques and KDD winner IDS methods. This paper provides a robust designed and implemented intelligent data classifier technique based on a single large size (30x30) self organizing map (SOM) having the capability to detect all types of attacks given in the DARPA Archive 1999 the lowest false positive rate being 0.04 % and higher detection rate being 99.73% tested using full KDD data sets and 89.54% comparable detection rate and 0.18% lowest false positive rate tested using corrected data sets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for data represented in multidimensional input spaces. In this paper, we describe Fast Learning SOM (FLSOM) which adopts a learning algorithm that improves the performance of the standard SOM with respect to the convergence time in the training phase. We show that FLSOM also improves the quality of the map by providing better clustering quality and topology preservation of multidimensional input data. Several tests have been carried out on different multidimensional datasets, which demonstrate better performances of the algorithm in comparison with the original SOM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional resource management has had as its main objective the optimization of throughput, based on parameters such as CPU, memory, and network bandwidth. With the appearance of Grid markets, new variables that determine economic expenditure, benefit and opportunity must be taken into account. The Self-organizing ICT Resource Management (SORMA) project aims at allowing resource owners and consumers to exploit market mechanisms to sell and buy resources across the Grid. SORMA's motivation is to achieve efficient resource utilization by maximizing revenue for resource providers and minimizing the cost of resource consumption within a market environment. An overriding factor in Grid markets is the need to ensure that the desired quality of service levels meet the expectations of market participants. This paper explains the proposed use of an economically enhanced resource manager (EERM) for resource provisioning based on economic models. In particular, this paper describes techniques used by the EERM to support revenue maximization across multiple service level agreements and provides an application scenario to demonstrate its usefulness and effectiveness. Copyright © 2008 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Information Visualization, adding and removing data elements can strongly impact the underlying visual space. We have developed an inherently incremental technique (incBoard) that maintains a coherent disposition of elements from a dynamic multidimensional data set on a 2D grid as the set changes. Here, we introduce a novel layout that uses pairwise similarity from grid neighbors, as defined in incBoard, to reposition elements on the visual space, free from constraints imposed by the grid. The board continues to be updated and can be displayed alongside the new space. As similar items are placed together, while dissimilar neighbors are moved apart, it supports users in the identification of clusters and subsets of related elements. Densely populated areas identified in the incSpace can be efficiently explored with the corresponding incBoard visualization, which is not susceptible to occlusion. The solution remains inherently incremental and maintains a coherent disposition of elements, even for fully renewed sets. The algorithm considers relative positions for the initial placement of elements, and raw dissimilarity to fine tune the visualization. It has low computational cost, with complexity depending only on the size of the currently viewed subset, V. Thus, a data set of size N can be sequentially displayed in O(N) time, reaching O(N (2)) only if the complete set is simultaneously displayed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional content-based image retrieval (CBIR) systems use low-level features such as colors, shapes, and textures of images. Although, users make queries based on semantics, which are not easily related to such low-level characteristics. Recent works on CBIR confirm that researchers have been trying to map visual low-level characteristics and high-level semantics. The relation between low-level characteristics and image textual information has motivated this article which proposes a model for automatic classification and categorization of words associated to images. This proposal considers a self-organizing neural network architecture, which classifies textual information without previous learning. Experimental results compare the performance results of the text-based approach to an image retrieval system based on low-level features. (c) 2008 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tackling a problem requires mostly, an ability to read it, conceptualize it, represent it, define it, and then applying the necessary mechanisms to solve it. This may sound self-evident except when the problem to be tackled happens to be “complex, “ “ill-structured,” and/or “wicked.” Corruption is one of those kinds of problems. Both in its global and national manifestations it is ill-structured. Where it is structural in nature, endemic and pervasive, it is perhaps even wicked. Qualities of the kind impose modest expectations regarding possibilities of any definitive solution to this insidious phenomenon. If so, it may not suffice to address the problem of corruption using existing categories of law and/or good governance, which overlook the “long-term memory” of the collective and cultural specific dimensions of the subject. Such socio-historical conditions require focusing on the interactive and self-reproducing networks of corruption and attempting to ‘subvert’ that phenomenon’s entire matrix. Concepts such as collective responsibility, collective punishment and sanctions are introduced as relevant categories in the structural, as well as behavioral, subversion of some of the most prevalent aspects of corruption. These concepts may help in the evolving of a new perspective on corruption fighting strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tackling a problem requires mostly, an ability to read it, conceptualize it, represent it, define it, and then applying the necessary mechanisms to solve it. This may sound self-evident except when the problem to be tackled happens to be “complex, “ “ill-structured,” and/or “wicked.” Corruption is one of those kinds of problems. Both in its global and national manifestations it is ill-structured. Where it is structural in nature, endemic and pervasive, it is perhaps even wicked. Qualities of the kind impose modest expectations regarding possibilities of any definitive solution to this insidious phenomenon. If so, it may not suffice to address the problem of corruption using existing categories of law and/or good governance, which overlook the “long-term memory” of the collective and cultural specific dimensions of the subject. Such socio-historical conditions require focusing on the interactive and self-reproducing networks of corruption and attempting to ‘subvert’ that phenomenon’s entire matrix. Concepts such as collective responsibility, collective punishment and sanctions are introduced as relevant categories in the structural, as well as behavioral, subversion of some of the most prevalent aspects of corruption. These concepts may help in the evolving of a new perspective on corruption fighting strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article highlights the potential benefits that the Kohonen method has for the classification of rivers with similar characteristics by determining regional ecological flows using the ELOHA (Ecological Limits of Hydrologic Alteration) methodology. Currently, there are many methodologies for the classification of rivers, however none of them include the characteristics found in Kohonen method such as (i) providing the number of groups that actually underlie the information presented, (ii) used to make variable importance analysis, (iii) which in any case can display two-dimensional classification process, and (iv) that regardless of the parameters used in the model the clustering structure remains. In order to evaluate the potential benefits of the Kohonen method, 174 flow stations distributed along the great river basin “Magdalena-Cauca” (Colombia) were analyzed. 73 variables were obtained for the classification process in each case. Six trials were done using different combinations of variables and the results were validated against reference classification obtained by Ingfocol in 2010, whose results were also framed using ELOHA guidelines. In the process of validation it was found that two of the tested models reproduced a level higher than 80% of the reference classification with the first trial, meaning that more than 80% of the flow stations analyzed in both models formed invariant groups of streams.