826 resultados para Self-organizing model
Resumo:
Työn tavoitteena on tutkia deittipalvelun käyttäjien anonyymiaineistoa neuroverkko-opetuksessa segmentoituneiden piirrekarttojen (SOM, Self-Organizing Map) avulla. Näiden piirrekarttojen avulla on tarkoitus selvittää, löytyykö mahdollisesti selkeitä SMS- ja e-mail - käyttäjäryhmiä. Tutkimusta lähestytään perehtymällä ensin yrityksen tekniseen palvelualusta-arkkitehtuuriin ja myös varsinaiseen deittipalveluun käyttäjän kannalta.Tutkimus aloitettiin koodaamalla tietoaineisto SOM Toolbox-ohjelmalle käytettäväksi. Varsinaisia tutkimustuloksia analysoitiin valitsemalla otoksia neuroverkko-opetuksessa segmentoituneista piirrekartoista. Saadut tulokset osoittavat, ettäSOM-teknologia soveltuu hyvin sisältöpalveluiden sosioteknologiseen tutkimukseen ja sitä on myös mahdollista käyttää asiakkuudenhallinnassa erilaisten käyttäjäryhmien profilointiin.
Resumo:
Vaikka keraamisten laattojen valmistusprosessi onkin täysin automatisoitu, viimeinen vaihe eli laaduntarkistus ja luokittelu tehdään yleensä ihmisvoimin. Automaattinen laaduntarkastus laattojen valmistuksessa voidaan perustella taloudellisuus- ja turvallisuusnäkökohtien avulla. Tämän työn tarkoituksena on kuvata tutkimusprojektia keraamisten laattojen luokittelusta erilaisten väripiirteiden avulla. Oleellisena osana tutkittiin RGB- ja spektrikuvien välistä eroa. Työn teoreettinen osuus käy läpi aiemmin aiheesta tehdyn tutkimuksen sekä antaa taustatietoa konenäöstä, hahmontunnistuksesta, luokittelijoista sekä väriteoriasta. Käytännön osan aineistona oli 25 keraamista laattaa, jotka olivat viidestä eri luokasta. Luokittelussa käytettiin apuna k:n lähimmän naapurin (k-NN) luokittelijaa sekä itseorganisoituvaa karttaa (SOM). Saatuja tuloksia verrattiin myös ihmisten tekemään luokitteluun. Neuraalilaskenta huomattiin tärkeäksi työkaluksi spektrianalyysissä. SOM:n ja spektraalisten piirteiden avulla saadut tulokset olivat lupaavia ja ainoastaan kromatisoidut RGB-piirteet olivat luokittelussa parempia kuin nämä.
Resumo:
Vuosi vuodelta kasvava tietokoneiden prosessointikyky on mahdollistanut harmaataso- ja RGB-värikuvia tarkempien spektrikuvien käsittelyn järjellisessä ajassa ilman suuria kustannuksia. Ongelmana on kuitenkin, ettei talletus- ja tiedonsiirtomedia ole kehittynyt prosessointikyvyn vauhdissa. Ratkaisu tähän ongelmaan on spektrikuvien tiivistäminen talletuksen ja tiedonsiirron ajaksi. Tässä työssä esitellään menetelmä, jossa spektrikuva tiivistetään kahdessa vaiheessa: ensin ryhmittelemällä itseorganisoituvan kartan (SOM) avulla ja toisessa vaiheessa jatketaan tiivistämistä perinteisin menetelmin. Saadut tiivistyssuhteet ovat merkittäviä vääristymän pysyessä siedettävänä. Työ on tehty Lappeenrannan teknillisen korkeakoulun Tietotekniikan osaston Tietojenkäsittelytekniikan tutkimuslaboratoriossa osana laajempaa kuvantiivistyksen tutkimushanketta.
Resumo:
CRM on yritysten tietojärjestelmä, jolla voidaan tukea asiakkuuden hallintaa ja kehittämistä. Monilla suuryrityksillä on paljon asiakkaita ja niiden on mahdotonta tunnistaa asiakkaitaan yksilöinä. Kuitenkin asiakkaat arvostavat yhä enemmän henkilökohtaista palvelua ja kontakteja. Yritysten asiakastietokantoihin kertyy runsaasti tietoa asiakkaista ja heidän ostokäyttäytymisestään. Suuresta informaatiomäärästä johtuen tarvitaan kehittynyttä tietotekniikkaa asiakkaiden tyypittelyyn ja asiakastarpeiden tunnistamiseen. Tässä diplomityössä kehitetään neuroCRM-teoriaa määrällisesti suuren ja monimutkaisen asiakasinformaation hallintaan. Teoria perustuu itseorganisoituvien neuroverkkojen käyttöön asiakasinformaation analysoimiseksi CRM-järjestelmässä. Asiakkaat segmentoidaan ja personoidaan iteratiivisia SOM-analyysejä suorittamalla. Tulosten perusteella kehitetään asiakkaiden yksilöllisyyttä huomioivia markkinointikeinoja ja käytetään uusia kanavia, esimerkiksi mobiilia viestintätekniikkaa asiakkaiden tavoittamiseen. Asiakaskannattavuuden parantamiseksi voi- daan tehdä strategisia valintoja ja päätöksiä markkinoinnin kohdentamista varten.
Resumo:
The life-design paradigm is among those rooted in Guichard's (2009) life self-construction model that describes the identity processes underlying the development of multiple social selves. In this chapter, which is a tribute to the major contribution of Jean Guichard to the field of educational and vocational guidance and counseling, we will try to explicate the links between career adaptability and subjective identity forms. Both highlight two different and important processes that are interdependent and which should be simultaneously considered in the life design paradigm. These processes allow people to behave as active agents in their environment and are of high importance in the contemporary socioeconomic context, characterized by globalization, an increase in employment insecurity, the destructuralization of one's life course, and individualization. This chapter argues that both career adapt-abilities and identity processes rely on reflexivity and self-awareness abilities. For this reason the system of subjective identity forms, as defined by Guichard, can be considered as a meta-competency allowing adaptation, meaning making, but also the allocation of process resources.
Resumo:
The number of digital images has been increasing exponentially in the last few years. People have problems managing their image collections and finding a specific image. An automatic image categorization system could help them to manage images and find specific images. In this thesis, an unsupervised visual object categorization system was implemented to categorize a set of unknown images. The system is unsupervised, and hence, it does not need known images to train the system which needs to be manually obtained. Therefore, the number of possible categories and images can be huge. The system implemented in the thesis extracts local features from the images. These local features are used to build a codebook. The local features and the codebook are then used to generate a feature vector for an image. Images are categorized based on the feature vectors. The system is able to categorize any given set of images based on the visual appearance of the images. Images that have similar image regions are grouped together in the same category. Thus, for example, images which contain cars are assigned to the same cluster. The unsupervised visual object categorization system can be used in many situations, e.g., in an Internet search engine. The system can categorize images for a user, and the user can then easily find a specific type of image.
Resumo:
Työssä esitellään käytetyimpiä tuotantofilosofioita. Tuotantofilosofia on hyvin laaja käsite ja sen vuoksi myös jotkin esiteltävistä menetelmistä ovat hyvin kaukana toisistaan. Työ koostuu teoriaosiosta, jossa on esitelty kukin tuotantofilosofia ja lopuksi johtopäätöksiä-osiossa käsitellään sitä, kuinka menetelmät liittyvät toisiinsa. Työssä esitellään JIT/JOT-tuotanto, Lean-tuotanto, Monozukuri, Modulointi, Standardointi, Strategiatyö, Six Sigma, TQM, TPM, QFD, MFD, Simulointi, Digitaalinen valmistus, DFX ja ns. uudet tuotantofilosofiat. Eri menetelmistä löytyvää lähdemateriaalia on tarjolla monipuolisesti, josta johtuen menetelmistä on voitu esitellä vain pääpiirteet. Tuotantofilosofioiden avulla voidaan saavuttaa monia eri asioita. Osa menetelmistä on luotu tuotannon tehostamiseksi ja yksinkertaistamiseksi, osa puolestaan lisää tuotannon tai koko yrityksen laatutasoa ja osa puolestaan helpottaa tuotteiden suunnittelu-työtä. Moni esiteltävistä filosofioista ei istu yksinomaan yhteen edellä mainituista kategorioista vaan kattaa laajempia alueita pitäen sisällään jopa kaikkia kolmea mainittua tulosta. Näiden lisäksi työssä on esitelty lyhyesti uusia tuotantofilosofioita, jotka ovat hieman irrallisia kokonaisuuksia verrattuna muihin työssä esiteltäviin filosofioihin. Työn tarkoituksena on auttaa hahmottamaan suurta kokonaisuutta jonka tuotantofilosofiat tuottavat. On tärkeää osata hahmottaa filosofioiden riippuvuus toisistaan ja se, että otettaessa käyttöön jotain tuotantofilosofiaa, tarkoittaa se myös mahdollisesti monen muunkin asian huomioonottamista. Tätä näkökantaa selvennetään johtopäätöksissä.
Resumo:
Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework. The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation. The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.
Resumo:
The large and growing number of digital images is making manual image search laborious. Only a fraction of the images contain metadata that can be used to search for a particular type of image. Thus, the main research question of this thesis is whether it is possible to learn visual object categories directly from images. Computers process images as long lists of pixels that do not have a clear connection to high-level semantics which could be used in the image search. There are various methods introduced in the literature to extract low-level image features and also approaches to connect these low-level features with high-level semantics. One of these approaches is called Bag-of-Features which is studied in the thesis. In the Bag-of-Features approach, the images are described using a visual codebook. The codebook is built from the descriptions of the image patches using clustering. The images are described by matching descriptions of image patches with the visual codebook and computing the number of matches for each code. In this thesis, unsupervised visual object categorisation using the Bag-of-Features approach is studied. The goal is to find groups of similar images, e.g., images that contain an object from the same category. The standard Bag-of-Features approach is improved by using spatial information and visual saliency. It was found that the performance of the visual object categorisation can be improved by using spatial information of local features to verify the matches. However, this process is computationally heavy, and thus, the number of images must be limited in the spatial matching, for example, by using the Bag-of-Features method as in this study. Different approaches for saliency detection are studied and a new method based on the Hessian-Affine local feature detector is proposed. The new method achieves comparable results with current state-of-the-art. The visual object categorisation performance was improved by using foreground segmentation based on saliency information, especially when the background could be considered as clutter.
Resumo:
The ongoing global financial crisis has demonstrated the importance of a systemwide, or macroprudential, approach to safeguarding financial stability. An essential part of macroprudential oversight concerns the tasks of early identification and assessment of risks and vulnerabilities that eventually may lead to a systemic financial crisis. Thriving tools are crucial as they allow early policy actions to decrease or prevent further build-up of risks or to otherwise enhance the shock absorption capacity of the financial system. In the literature, three types of systemic risk can be identified: i ) build-up of widespread imbalances, ii ) exogenous aggregate shocks, and iii ) contagion. Accordingly, the systemic risks are matched by three categories of analytical methods for decision support: i ) early-warning, ii ) macro stress-testing, and iii ) contagion models. Stimulated by the prolonged global financial crisis, today's toolbox of analytical methods includes a wide range of innovative solutions to the two tasks of risk identification and risk assessment. Yet, the literature lacks a focus on the task of risk communication. This thesis discusses macroprudential oversight from the viewpoint of all three tasks: Within analytical tools for risk identification and risk assessment, the focus concerns a tight integration of means for risk communication. Data and dimension reduction methods, and their combinations, hold promise for representing multivariate data structures in easily understandable formats. The overall task of this thesis is to represent high-dimensional data concerning financial entities on lowdimensional displays. The low-dimensional representations have two subtasks: i ) to function as a display for individual data concerning entities and their time series, and ii ) to use the display as a basis to which additional information can be linked. The final nuance of the task is, however, set by the needs of the domain, data and methods. The following ve questions comprise subsequent steps addressed in the process of this thesis: 1. What are the needs for macroprudential oversight? 2. What form do macroprudential data take? 3. Which data and dimension reduction methods hold most promise for the task? 4. How should the methods be extended and enhanced for the task? 5. How should the methods and their extensions be applied to the task? Based upon the Self-Organizing Map (SOM), this thesis not only creates the Self-Organizing Financial Stability Map (SOFSM), but also lays out a general framework for mapping the state of financial stability. This thesis also introduces three extensions to the standard SOM for enhancing the visualization and extraction of information: i ) fuzzifications, ii ) transition probabilities, and iii ) network analysis. Thus, the SOFSM functions as a display for risk identification, on top of which risk assessments can be illustrated. In addition, this thesis puts forward the Self-Organizing Time Map (SOTM) to provide means for visual dynamic clustering, which in the context of macroprudential oversight concerns the identification of cross-sectional changes in risks and vulnerabilities over time. Rather than automated analysis, the aim of visual means for identifying and assessing risks is to support disciplined and structured judgmental analysis based upon policymakers' experience and domain intelligence, as well as external risk communication.
Resumo:
Ett ämne som väckt intresse både inom industrin och forskningen är hantering av kundförhållanden (CRM, eng. Customer Relationship Management), dvs. en kundorienterad affärsstrategi där företagen från att ha varit produktorienterade väljer att bli mera kundcentrerade. Numera kan kundernas beteende och aktiviteter lätt registreras och sparas med hjälp av integrerade affärssystem (ERP, eng. Enterprise Resource Planning) och datalager (DW, eng. Data Warehousing). Kunder med olika preferenser och köpbeteende skapar sin egen ”signatur” i synnerhet via användningen av kundkort, vilket möjliggör mångsidig modellering av kundernas köpbeteende. För att få en översikt av kundernas köpbeteende och deras lönsamhet, används ofta kundsegmentering som en metod för att indela kunderna i grupper utgående från deras likheter. De mest använda metoderna för kundsegmentering är analytiska modeller konstruerade för en viss tidsperiod. Dessa modeller beaktar inte att kundernas beteende kan förändras med tiden. I föreliggande avhandling skapas en holistisk översikt av kundernas karaktär och köpbeteende som utöver de konventionella segmenteringsmodellerna även beaktar dynamiken i köpbeteendet. Dynamiken i en kundsegmenteringsmodell innefattar förändringar i segmentens struktur och innehåll, samt förändringen av individuella kunders tillhörighet i ett segment (s.k migrationsanalyser). Vardera förändringen modelleras, analyseras och exemplifieras med visuella datautvinningstekniker, främst med självorganiserande kartor (SOM, eng. Self-Organizing Maps) och självorganiserande tidskartor (SOTM), en vidareutveckling av SOM. Visualiseringen anteciperas underlätta tolkningen av identifierade mönster och göra processen med kunskapsöverföring mellan den som gör analysen och beslutsfattaren smidigare. Asiakkuudenhallinta (CRM) eli organisaation muuttaminen tuotepainotteisesta asiakaskeskeiseksi on herättänyt mielenkiintoa niin yliopisto- kuin yritysmaailmassakin. Asiakkaiden käyttäytymistä ja toimintaa pystytään nykyään helposti tallentamaan ja varastoimaan toiminnanohjausjärjestelmien ja tietovarastojen avulla; asiakkaat jättävät jatkuvasti piirteistään ja ostokäyttäytymisestään kertovia tietojälkiä, joita voidaan analysoida. On tavallista, että asiakkaat poikkeavat toisistaan eri tavoin, ja heidän mieltymyksensä kuten myös ostokäyttäytymisensä saattavat olla hyvinkin erilaisia. Asiakaskäyttäytymisen monimuotoisuuteen ja tuottavuuteen paneuduttaessa käytetäänkin laajalti asiakassegmentointia eli asiakkaiden jakamista ryhmiin samankaltaisuuden perusteella. Perinteiset asiakassegmentoinnin ratkaisut ovat usein yksittäisiä analyyttisia malleja, jotka on tehty tietyn aikajakson perusteella. Tämän vuoksi ne monesti jättävät huomioimatta sen, että asiakkaiden käyttäytyminen saattaa ajan kuluessa muuttua. Tässä väitöskirjassa pyritäänkin tarjoamaan holistinen kuva asiakkaiden ominaisuuksista ja ostokäyttäytymisestä tarkastelemalla kahta muutosvoimaa tiettyyn aikarajaukseen perustuvien perinteisten segmentointimallien lisäksi. Nämä kaksi asiakassegmentointimallin dynamiikkaa ovat muutokset segmenttien rakenteessa ja muutokset yksittäisten asiakkaiden kuulumisessa ryhmään. Ensimmäistä dynamiikkaa lähestytään ajallisen asiakassegmentoinnin avulla, jossa visualisoidaan ajan kuluessa tapahtuvat muutokset segmenttien rakenteissa ja profiileissa. Toista dynamiikkaa taas lähestytään käyttäen nk. segmenttisiirtymien analyysia, jossa visuaalisin keinoin tunnistetaan samantyyppisesti segmentistä toiseen vaihtavat asiakkaat. Visualisoinnin tehtävänä on tukea havaittujen kaavojen tulkitsemista sekä helpottaa tiedonsiirtoa analysoijan ja päättäjien välillä. Visuaalisia tiedonlouhintamenetelmiä, kuten itseorganisoivia karttoja ja niiden laajennuksia, käytetään osoittamaan näiden menetelmien hyödyllisyys sekä asiakkuudenhallinnassa yleisesti että erityisesti asiakassegmentoinnissa.
Resumo:
This thesis studies the predictability of market switching and delisting events from OMX First North Nordic multilateral stock exchange by using financial statement information and market information from 2007 to 2012. This study was conducted by using a three stage process. In first stage relevant theoretical framework and initial variable pool were constructed. Then, explanatory analysis of the initial variable pool was done in order to further limit and identify relevant variables. The explanatory analysis was conducted by using self-organizing map methodology. In the third stage, the predictive modeling was carried out with random forests and support vector machine methodologies. It was found that the explanatory analysis was able to identify relevant variables. The results indicate that the market switching and delisting events can be predicted in some extent. The empirical results also support the usability of financial statement and market information in the prediction of market switching and delisting events.
Resumo:
Retaining players and re-attracting switching players has long been a central topic for SNG providers with regard to the post-adoption stage of playing an online game. However, there has not been much research which has explored players’ post-adoption behavior by incorporating the continuance intention and the switching intention. In addition, traditional IS continuance theories were mainly developed to investigate users’ continued use of utilitarian IS, and thus they may fall short when trying to explain the continued use of hedonic IS. Furthermore, compared to the richer literature on IS continuance, far too little attention has been paid to IS switching, leading to a dearth of knowledge on the subject, despite the increased incidence of the switching phenomenon in the IS field. By addressing the limitations of prior literature, this study seeks to examine the determinants of SNG players’ two different post-adoption behaviors, including the continuance intention and the switching intention. This study takes a positivist approach and uses survey research method to test five proposed research models based on Unified Theory of Acceptance and Use of Technology 2; Use and Gratification Theory; Push-Pull-Mooring model; Cognitive Dissonance Theory; and a self-developed model respectively with empirical data collected from the SNG players of one of the biggest SNG providers in China. A total of 3919 valid responses and 541 valid responses were used to examine the continuance intention and the switching intention, respectively. SEM is utilized as the data analysis method. The proposed research models are supported by the empirical data. The continuance intention is determined by enjoyment, fantasy, escapism, social interaction, social presence, social influence, achievement and habit. The switching intention is determined by enjoyment, satisfaction, subjective norms, descriptive norms, alternative attractiveness, the need for variety, change experience, and adaptation cost. This study contributes to IS theories in three important ways. Firstly, it shows IS switching should be included in IS post-adoption research together with IS continuance. Secondly, a modern IS is usually multi-functional and SNG players have multiple reasons for using a SNG, thus a player’s beliefs about the hedonic, social and utilitarian perceptions of their continued use of the SNG exert significant effects on the continuance intention. Thirdly, the determinants of the switch ing intention mainly exert push, pull, and mooring effects. Players’ beliefs about their current SNG and the available alternatives, as well as their individual characteristics are all significant determinants of the switching intention. SNG players combine these effects in order to formulate the switching intention. Finally, this study presents limitations and suggestions for future research.
Resumo:
Tämän diplomityön tavoitteina oli luoda suunnitelma ISO 9001 ja 14001 -sertifikaatteihin oikeuttavalle laadunhallintajärjestelmälle ja luoda malli projektiorganisaation toiminnan mittaamiselle ja kehittämiselle. Lisäksi työn tarkoituksena oli luoda teoreettinen osaamispohja projektipäällikölle laadunhallintajärjestelmäprojektin läpiviemisen tueksi. Työssä perehdyttiin laadunhallinnan periaatteisiin, tietojärjestelmäprojektikehityksen elinkaareen, tietojärjestelmäprojektien kriittisiin menestystekijöihin ja itsearviointimallin laatimisperiaatteisiin. Diplomityön kanssa lomittain suoritetulle laadunhallintajärjestelmäprojektille parhaiten sopivat käytännöt tunnistettiin kirjallisuudesta sekä puolistrukturoidulla haastattelulla Volvo Finland Ab:n johdon edustajille. Työssä luodun suunnitelman mukainen laadunhallintajärjestelmä toteutettiin Volvo Finland Ab:lle yhdessä nelikymmenhenkisen projektiorganisaation kanssa. Projektin aikana tehdyn aktiivisen, osallistuvan havainnoinnin ja diplomityössä luodun itsearviointimallin perusteella kartoitettiin projektiorganisaatiolle parhaiten sopivat toimintamenetelmät. Toimintamenetelmäkartoituksen tuloksena todettiin, että organisaation tietotaito on vertikaalista ja tästä syystä resurssienhallinta nostettiin kriittisimmäksi elementiksi projektien onnistumisen kannalta. Resurssienhallinnan tueksi ehdotettiin Stage-Gate-mallia projektien läpiviemiseen. Mallin avulla voitaisiin resurssit hallitusti kohdistaa uudelleen projektin joka vaiheessa.
Resumo:
Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state’ fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.