885 resultados para Screen printed electrodes
Resumo:
A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.
Resumo:
The use of Australian screen content in Australian schools and universities is undergoing rapid change due to digital and online distribution capacity on the supply side and digital and online affordance embedded in student cultures. This paper examines the ways in which Australian screen content and its distribution are beginning to adapt to educational usage. Issues facing content rights holders, distribution companies and emerging digital platforms reflect broad-based digital disruption patterns. Learning opportunities that can coincide with the growth in uptake of Australian screen content in Australia's education sector are not immune to the challenges posed by emerging digital consumption behaviours and issues of sustainability. At the same time, the growth in the use of digital and online screen content learning resources, under current copyright conditions, poses significant increases in the underlying cost structure for educational interests. This paper examines the innovations occurring in both the supply and the demand sides of Australian screen content and the expanded learning opportunities arising out of emerging digital affordances. Precedents in the UK are explored that demonstrate how stronger connections can be forged between nationally produced film and media content and a national curriculum. While addressing recent issues arising out of the Australian Law Review Commission's inquiry into copyright in the digital economy, the purpose of this discussion is not to assess policy debates about fair use versus fair dealing. What is clear, however, is that independent research is required that draws upon research-based evidence with an aim to better understanding the needs of the education sector against the transformative shifts taking place in digital-based learning materials and their modes of delivery.
Resumo:
Within Australian universities, doctoral research in screen production is growing significantly. Two recent studies have documented both the scale of this research and inconsistencies in the requirements of the degree. These institutional variations, combined with a lack of clarity around appropriate methodologies for academic research through film and television practice, create challenges for students, supervisors, examiners and the overall development of the discipline. This paper will examine five recent doctorates in screen production practice at five different Australian universities. It will look at the nature of the films made, the research questions the candidates were investigating, the new knowledge claims that were produced and the subsequent impact of the research. The various methodologies used will be given particular attention because they help define the nature of the research where film production is a primary research method.
Resumo:
In this article, we investigate the complex relationship between concerns about children and young people’s exposure to cinema in 1920s Australia and the use of film in education. In part, the Royal Commission into the Moving Picture Industry in Australia aimed to ‘ascertain the effect and the extent of the power of film upon juveniles’ and Commissioners spoke to educationalists, psychologists, medical professions, police officers and parents to gain insight into the impacts of movies on children. Numerous issues were canvassed in the Commission hearings such as exposure to sexual content, ‘excesses’ in film content, children’s inability to concentrate at school following cinema attendance and the influence of cinema on youth crime. While the Commission ultimately suggested it was parents’ role to police children’s engagements with cinema, it did make recommendations for restricting children’s access to films with inappropriate themes. Meanwhile, the Commission was very positive about film’s educational role stating that ‘the advantage to be gained by the use of the cinematograph as an adjunct to educational methods should be assisted in every possible way by the Commonwealth’. We draw on the Commission’s minutes of evidence, the Commission report and newspaper articles form the 1920s to the 1940s to argue that the Commission provides valuable insight into the beginnings of the use of screen content in formal schooling, both as a resource across the curriculum and as a specific focus of education through film appreciation and, later, broader forms of media education. The article argues debates about screen entertainment and education rehearsed in the Commission are reflected today as parents, concerned citizens and educators ponder the dangers and potential of new media technologies and media content used by children and young people such as video games, social media and interactive content.
Resumo:
Objective. To localize the regions containing genes that determine susceptibility to ankylosing spondylitis (AS). Methods. One hundred five white British families with 121 affected sibling pairs with AS were recruited, largely from the Royal National Hospital for Rheumatic Diseases AS database. A genome-wide linkage screen was undertaken using 254 highly polymorphic microsatellite markers from the Medical Research Council (UK) (MRC) set. The major histocompatibility complex (MHC) region was studied more intensively using 5 microsatellites lying within the HLA class III region and HLA-DRB1 typing. The Analyze package was used for 2-point analysis, and GeneHunter for multipoint analysis. Results. When only the MRC set was considered, 11 markers in 7 regions achieved a P value of ≤0.01. The maximum logarithm of odds score obtained was 3.8 (P = 1.4 x 10-5) using marker D6S273, which lies in the HLA class III region. A further marker used in mapping of the MHC class III region achieved a LOD score of 8.1 (P = 1 x 10-9). Nine of 118 affected sibling pairs (7.6%) did not share parental haplotypes identical by descent across the MHC, suggesting that only 31% of the susceptibility to AS is coded by genes linked to the MHC. The maximum non-MHC LOD score obtained was 2.6 (P = 0.0003) for marker D16S422. Conclusion. The results of this study confirm the strong linkage of the MHC with AS, and provide suggestive evidence regarding the presence and location of non-MHC genes influencing susceptibility to the disease.
Resumo:
Nanohybrids consisting of both carbon and pseudocapacitive metal oxides are promising as high-performance electrodes to meet the key energy and power requirements of supercapacitors. However, the development of high-performance nanohybrids with controllable size, density, composition and morphology remains a formidable challenge. Here, we present a simple and robust approach to integrating manganese oxide (MnOx) nanoparticles onto flexible graphite paper using an ultrathin carbon nanotube/reduced graphene oxide (CNT/RGO) supporting layer. Supercapacitor electrodes employing the MnOx/CNT/RGO nanohybrids without any conductive additives or binders yield a specific capacitance of 1070 F g−1 at 10 mV s−1, which is among the highest values reported for a range of hybrid structures and is close to the theoretical capacity of MnOx. Moreover, atmospheric-pressure plasmas are used to functionalize the CNT/RGO supporting layer to improve the adhesion of MnOx nanoparticles, which results in theimproved cycling stability of the nanohybrid electrodes. These results provide information for the utilization of nanohybrids and plasma-related effects to synergistically enhance the performance of supercapacitors and may create new opportunities in areas such as catalysts, photosynthesis and electrochemical sensors
Resumo:
Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance.
Resumo:
Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.
Resumo:
There may be a new wave of media globalisation based on what may appear to be the virtually frictionless, near-global reach of major digital content delivery platforms, pre-eminently YouTube. This article looks at the scale and significance of this new screen ecology, considering its continuities and discontinuities with established understandings of media globalisation, arguing against the notion that it provides a platform for new forms of cultural hegemony. Focusing on the periphery rather than the centre, it uses Australia as a case study in asking the question: in what ways does it make sense to talk about a nationally demarked YouTube space?
Resumo:
This thesis examines the significance of crowdfunding for Australian filmmakers and provides an empirical basis to current claims about the role of crowdfunding in the film production and policy sectors. It has found that crowdfunding is a small but growing source of supplementary finance which is opening up new possibilities for Australian independent screen content producers. This project also highlights the discussion within Australian film policy circles that is opening the way for crowdfunding to potentially become a larger and more formalised component of current and emerging policy initiatives.
Resumo:
Partial discharges in a gaseous interface due to the presence of a dielectric between two uniform field electrodes in air at different pressures from 0.5 to 685 mm Hg have been studied and measurements of inception and extinction voltages, number of pulses and their charge magnitudes at inception are reported. It has been observed that the extinction voltage can be as low as 70% of the inception voltage suggesting that the working voltage in such cases should be about 30% lower than the observed inception voltage. Small magnitude pulses are found to be more in number than large magnitude pulses. The charge is found to be pressure dependent. The results have been explained on the basis of an equivalent circuit consisting of resistance and capacitance in which the discharge gap functions as a switch.
Resumo:
A new technique has been devised to achieve a steady-state polarisation of a stationary electrode with a helical shaft rotating coaxial to it. A simplified theory for the convective hydrodynamics prevalent under these conditions has been formulated. Experimental data are presented to verify the steady-state character of the current-potential curves and the predicted dependence of the limiting current on the rotation speed of the rotor, the bulk concentration of the depolariser and the viscosity of the solution. Promising features of the multiple-segment electrodes concentric to a central disc electrode are pointed out.
Resumo:
Electrochemical data are reported for oxygen reduction on platinized coconut-shell charcoal electrodes in 2.5M H*SO,, and 7M HsF’04. In both these media the electrodes exhibit good activity and can sustain currents up to 600 mA cm-* at a polarization of about 400 mV from their rest potentials. The overall performance is comparable with the best type of carbonsupported platinum electrodes reported in the literature.
Resumo:
This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Experimental results for breakdown voltage of sodium vapour measured for the first time using coaxial cylindrical electrodes of fixed gap distance (5 mm) and pressure (corrected to2 0 "C) in the range2 1 to 652 Pa are reported, and are founfdo l ltoow Paschen's Law. The investigations also reveal that V th-Ie characteristics are pressure dependent; the current during the breakdown and the buoifl dc-uurpre nt after a breakdoiws nei ther positive or negative. in spite of the central cylinder being always maintained at a positive potential