796 resultados para Scalene Muscles
Resumo:
Goncalves DA, Silveira WA, Lira EC, Gra a FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302: E123-E133, 2012. First published September 27, 2011; doi:10.1152/ajpendo.00188.2011.-Although it is well known that administration of the selective beta(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 mu M), a PKA activator. The in vitro addition of triciribine (10 mu M), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.
Resumo:
Pieri N.C.G., Alicia M. Flamini A.M., Barbeito C.G., Casals J.B., Roque K.B., Favaron P.O., Miglino M.A. & Martins D.S. 2012. [Shape and function of the perineal muscles of viscacha (Lagostomus maximus).] Forma e funcao dos musculos perineais da viscacha (Lagostomus maximus). Pesquisa Veterinaria Brasileira 32(2):183-187. Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de Sao Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP 13635-900, Brazil. E-mail: daniele@usp.br. Among the rodent species studied we can highlight the wide variation in the morphology of the male reproductive system. Thus, considering the ecological importance of rodents, and the large number and geographical representation of this animal, as well as shortages regarding the reproductive anatomy, we developed this study with viscacha, a South American histricomorph rodent. As this species has some very peculiar reproductive features, we described the gross anatomy of the perineal muscles and the role of copulatory behavior. The perineal region of viscacha is composed of five muscles, three of which are arranged in the superficial genitourinary diaphragm, as Musculus ischiocavernosus, M. bulbocavernosus and M. bulbospongiosus, and the muscles that lie at the pelvic diaphragm, M. levator ani and M. retractor penis. Therefore, we emphasize that the study of the pelvic floor in wild animals is of great value, then contribute to a better understanding of the mechanisms related to erection and ejaculation or collaborate with studies on the reproduction of animals.
Resumo:
Background and objective: Malnutrition is prevalent in hospitalized patients and causes systemic damage including effects on the respiratory and immune systems, as well as predisposing to infection and increasing postoperative complications and mortality. This study aimed to assess the impact of malnutrition on the rate of postoperative pulmonary complications, respiratory muscle strength and chest wall expansion in patients undergoing elective upper abdominal surgery. Methods: Seventy-five consecutive candidates for upper abdominal surgery (39 in the malnourished group (MNG) and 36 in the control group (CG)) were enrolled in this prospective controlled cohort study. All patients were evaluated for nutritional status, respiratory muscle strength, chest wall expansion and lung function before surgery. Postoperative pulmonary complications (pneumonia, tracheobronchitis, atelectasis and acute respiratory failure) before discharge from hospital were also evaluated. Results: The MNG showed expiratory muscle weakness (MNG 65 +/- 24 vs CG 82 +/- 22 cm H2O; P < 0.001) and decreased chest wall expansion (P < 0.001), whereas inspiratory muscle strength and lung function were preserved (P > 0.05). The MNG also had a higher incidence of postoperative pulmonary complications compared with the CG (31% and 11%, respectively; P = 0.05). In addition, expiratory muscle weakness was correlated with BMI in the MNG (r = 0.43; P < 0.01). The association between malnutrition and expiratory muscle weakness increased the likelihood of postoperative pulmonary complications after upper abdominal surgery (P = 0.02). Conclusions: These results show that malnutrition is associated with weakness of the expiratory muscles, decreased chest wall expansion and increased incidence of pulmonary complications in patients undergoing elective upper abdominal surgery.
Resumo:
The Characiformes are distributed throughout large portions of the freshwaters of Africa and America. About 90% of the almost 2000 characiform species inhabit the American rivers, with their greatest diversity occurring in the Neotropical region. As in most other groups of fishes, the current knowledge about characiform myology is extremely poor. This study presents the results of a survey of the mandibular, hyopalatine, and opercular musculature of 65 species representing all the 18 traditionally recognized characiform families, including the 14 subfamilies and several genera incertae sedis of the Characidae, the most speciose family of the order. The morphological variation of these muscles across the order is documented in detail and the homologies of the characiform adductor mandibulae divisions are clarified. Accordingly, the mistaken nomenclature previously applied to these divisions in some characiform taxa is herein corrected. Contradicting some previous studies, we found that none of the examined characiforms lacks an A3 section of the adductor mandibulae, but instead some taxa have an A3 continuous with A2. Derived myological features are identified as new putative synapomorphies for: the Characoidei; the clade composed of the Alestidae, Characidae, Gasteropelecidae, Cynodontoidea, and Erythrinoidea; the clade Cynodontoidea plus Erythrinoidea; the clade formed by Ctenoluciidae and Erythrinidae; the Serrasalminae; and the Triportheinae. Additionally, new myological data seems to indicate that the Agoniatinae might be more closely related to cynodontoids and erythrinoids than to other characids. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Background: The reduction of the pelvic floor muscles (PFM) strength is a major cause of stress urinary incontinence (SUI). Objective: To compare active and passive forces, and vaginal cavity aperture in continent and stress urinary incontinent women. Method: The study included a total of thirty-two women, sixteen continent women (group 1 - G1) and sixteen women with SUI (group 2 - G2). To evaluate PFM passive and active forces in anteroposterior (sagittal plane) and left-right directions (frontal plane) a stainless steel specular dynamometer was used. Results: The anteroposterior active strength for the continent women (mean +/- standard deviation) (0.3 +/- 0.2 N) was greater compared to the values found in the evaluation of incontinent women (0.1 +/- 0.1 N). The left-right active strength (G1=0.43 +/- 0.1 N; G2=0.40 +/- 0.1 N), the passive force (G1=1.1 +/- 0.2 N; G2=1.1 +/- 0.3 N) and the vaginal cavity aperture (G1=21 +/- 3 mm; G2=24 +/- 4 mm) did not differ between groups 1 and 2. Conclusion: The function evaluation of PFM showed that women with SUI had a lower anteroposterior active strength compared to continent women.
Resumo:
Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive and irreversible degeneration of the muscles. The mdx mouse is the classical animal model for DMD, showing similar molecular and protein defects. The mdx mouse, however, does not show significant muscle weakness, and the diaphragm muscle is significantly more degenerated than skeletal muscles. In this work, magnetic resonance spectroscopy (MRS) was used to study the metabolic profile of quadriceps and diaphragm muscles from mdx and control mice. Using principal components analysis (PCA), the animals were separated into groups according to age and lineages. The classification was compared to histopathological analysis. Among the 24 metabolites identified from the nuclear MR spectra, only 19 were used by the PCA program for classification purposes. These can be important key biomarkers associated with the progression of degeneration in mdx muscles and with natural aging in control mice. Glutamate, glutamine, succinate, isoleucine, acetate, alanine and glycerol were increased in mdx samples as compared to control mice, in contrast to carnosine, taurine, glycine, methionine and creatine that were decreased. These results suggest that MRS associated with pattern recognition analysis can be a reliable tool to assess the degree of pathological and metabolic alterations in the dystrophic tissue, thereby affording the possibility of evaluation of beneficial effects of putative therapies. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Skeletal muscles from old rats fail to completely regenerate following injury. This study investigated whether pharmacological stimulation of beta 2-adrenoceptors in aged muscles following injury could improve their regenerative capacity, focusing on myofiber size recovery. Young and aged rats were treated with a subcutaneous injection of beta 2-adrenergic agonist formoterol (2 mu g/kg/d) up to 10 and 21 days after soleus muscle injury. Formoterol-treated muscles from old rats evaluated at 10 and 21 days postinjury showed reduced inflammation and connective tissue but a similar number of regenerating myofibers of greater caliber when compared with their injured controls. Formoterol minimized the decrease in tetanic force and increased protein synthesis and mammalian target of rapamycin phosphorylation in old muscles at 10 days postinjury. Our results suggest that formoterol improves structural and functional regenerative capacity of regenerating skeletal muscles from aged rats by increasing protein synthesis via mammalian target of rapamycin activation. Furthermore, formoterol may have therapeutic benefits in recovery following muscle damage in senescent individuals.
Resumo:
Background: The objective of this study was to analyze the muscle strength and endurance of the proximal and distal lower-extremity muscles in peripheral artery disease (PAD) patients. Methods: Twenty patients with bilateral PAD with symptoms of intermittent claudication and nine control subjects without PAD were included in the study, comprising 40 and 18 legs, respectively. All subjects performed an isokinetic muscle test to evaluate the muscle strength and endurance of the proximal (knee extension and knee flexion movements) and distal (plantar flexion and dorsiflexion movements) muscle groups in the lower extremity. Results: Compared with the control group, the PAD group presented lower muscle strength in knee flexion (-14.0%), dorsiflexion (-26.0%), and plantar flexion (-21.2%) movements (P < 0.05) but similar strength in knee extension movements (P > 0.05). The PAD patients presented a 13.5% lower knee flexion/extension strength ratio compared with the control subjects (P < 0.05), as well as lower muscle endurance in dorsiflexion (-28.1%) and plantar flexion (-17.0%) movements (P < 0.05). The muscle endurance in knee flexion and knee extension movements was similar between PAD patients and the control subjects (P > 0.05). Conclusion: PAD patients present lower proximal and distal muscle strength and lower distal muscle endurance than control patients. Therefore, interventions to improve muscle strength and endurance should be prescribed for PAD patients.
Resumo:
Decreased activity of the lumbar stabilizer muscles has been identified in individuals with sway-back posture. Disuse can predispose these muscles to atrophy, which is characterized by a reduced cross-sectional area (CSA) and by fat infiltration. The aim of this study was to evaluate the amount of fat infiltration in the lumbar multifidus and lumbar erector spinae muscles as a sign of the muscle atrophy in individuals with sway-back posture, with and without low back pain. Forty-five sedentary individuals between 16 and 40 years old participated in this study. The sample was divided into three groups: symptomatic sway-back (SSBG) (n = 15), asymptomatic sway-back (ASBG) (n = 15), and control (CG) (n = 15). The individuals were first subjected to photographic analysis to classify their postures and were then referred for a magnetic resonance imaging (MRI) examination of the lumbar spine. The total (TCSA) and functional (FCSA) cross-sectional areas of the lumbar erector spinae together with lumbar multifidus and isolated lumbar multifidus muscles were measured from L1 to S1. The amount of fat infiltration was estimated as the difference between the TCSA and the FCSA. Greater fat deposition was observed in the lumbar erector spinae and lumbar multifidus muscles of the individuals in the sway-back posture groups than in the control group. Pain may have contributed to the difference in the amount of fat observed in the groups with the same postural deviation. Similarly, sway-back posture may have contributed to the tissue substitution relative to the control group independently of low back pain. The results of this study indicate that individuals with sway-back posture may be susceptible to morphological changes in their lumbar erector spinae and lumbar multifidus muscles, both due to the presence of pain and as a consequence of their habitual posture.
Resumo:
Objective: To evaluate the influence of myofascial pain on the Pressure Pain Threshold (PPT) of masticatory muscles in women with migraine. Methods: The sample comprised 101 women, ages ranging from 18 to 60 years, with an episodic migraine diagnosis previously confirmed by a neurologist. All patients were evaluated using Research Diagnostic Criteria for Temporomandibular Disorders to determine the presence of myofascial pain and were divided into 2 groups: group I (n=56), comprising women with a migraine, and group II (n=45), comprising women with a migraine and myofascial pain. Two more groups (49 asymptomatic women and 50 women with myofascial pain), matched for sex and race, obtained from a previous study, were added to this study. The PPT values of masseter and temporalis (anterior, middle, and posterior regions) muscles were recorded bilaterally using a pressure algometer. One-way analysis of variance and the Tukey test for pairwise comparisons were used in statistical analysis with a 5% significance level. Results: We found that all groups had significantly lower PPT values compared with asymptomatic women, with lower values seen in group II (women with migraine and myofascial pain). Women with a migraine and myofascial pain showed significantly lower PPT values compared with women with a migraine only, and also when compared with women with myofascial pain only. Discussion: Migraine, especially when accompanied by myofascial pain, reduces the PPT of masticatory muscles, suggesting the importance of masticatory muscle palpation during examination of patients with migraine.
Resumo:
Abstract Background: Coactivation may be both desirable (injury prevention) or undesirable (strength measurement). In this context, different styles of muscle strength stimulus have being investigated. In this study we evaluated the effects of verbal and visual stimulation on rectus femoris and biceps femoris muscles contraction during isometric and concentric. Methods: We investigated 13 men (age =23.1 ± 3.8 years old; body mass =75.6 ± 9.1 kg; height =1.8 ± 0.07 m). We used the isokinetic dynamometer BIODEX device and an electromyographic (EMG) system. We evaluated the maximum isometric and isokinetic knee extension and flexion at 60°/s. The following conditions were evaluated: without visual nor verbal command (control); verbal command; visual command and; verbal and visual command. In relation to the concentric contraction, the volunteers performed five reciprocal and continuous contractions at 60°/s. With respect to isometric contractions it was made three contractions of five seconds for flexion and extension in a period of one minute. Results: We found that the peak torque during isometric flexion was higher in the subjects in the VVC condition (p > 0.05). In relation to muscle coactivation, the subjects presented higher values at the control condition (p > 0.05). Conclusion We suggest that this type of stimulus is effective for the lower limbs.
Resumo:
[EN] PURPOSE: To determine the volume and degree of asymmetry of iliopsoas (IL) and gluteal muscles (GL) in tennis and soccer players. METHODS: IL and GL volumes were determined using magnetic resonance imaging (MRI) in male professional tennis (TP) and soccer players (SP), and in non-active control subjects (CG) (n = 8, 15 and 6, respectively). RESULTS: The dominant and non-dominant IL were hypertrophied in TP (24 and 36%, respectively, P<0.05) and SP (32 and 35%, respectively, P<0.05). In TP the asymmetric hypertrophy of IL (13% greater volume in the non-dominant than in the dominant IL, P<0.01) reversed the side-to-side relationship observed in CG (4% greater volume in the dominant than in the contralateral IL, P<0.01), whilst soccer players had similar volumes in both sides (P = 0.87). The degree of side-to-side asymmetry decreased linearly from the first lumbar disc to the pubic symphysis in TP (r = -0.97, P<0.001), SP (r = -0.85, P<0.01) and CG (r = -0.76, P<0.05). The slope of the relationship was lower in SP due to a greater hypertrophy of the proximal segments of the dominant IL. Soccer and CG had similar GL volumes in both sides (P = 0.11 and P = 0.19, for the dominant and contralateral GL, respectively). GL was asymmetrically hypertrophied in TP. The non-dominant GL volume was 20% greater in TP than in CG (P<0.05), whilst TP and CG had similar dominant GL volumes (P = 0.14). CONCLUSIONS: Tennis elicits an asymmetric hypertrophy of IL and reverses the normal dominant-to-non-dominant balance observed in non-active controls, while soccer is associated to a symmetric hypertrophy of IL. Gluteal muscles are asymmetrically hypertrophied in TP, while SP display a similar size to that observed in controls. It remains to be determined whether the different patterns of IL and GL hypertrophy may influence the risk of injury.
Resumo:
The purpose of this investigation was to evaluate the effectiveness of laser acupuncture within the scope of a pilot study.
Resumo:
Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.
Resumo:
Subjects with temporomandibular disorders (TMDs) have been found to have clinical signs and symptoms of cervical dysfunction. Although many studies have investigated the relationship between the cervical spine and TMD, no study has evaluated the endurance capacity of the cervical muscles in patients with TMD. Thus the objective of this study was to determine whether patients with TMD had a reduced endurance of the cervical flexor muscles at any level of muscular contraction when compared with healthy subjects. One hundred and forty-nine participants provided data for this study (49 subjects were healthy, 54 had myogenous TMD, and 46 had mixed TMD). There was a significant difference in holding time at 25% MVC between subjects with mixed TMD when compared to subjects with myogenous TMD and healthy subjects. This implies that subjects with mixed TMD had less endurance capacity at a lower level of contraction (25% MVC) than healthy subjects and subjects with myogenous TMD. No significant associations between neck disability, jaw disability, clinical variables and neck flexor endurance test were found.