950 resultados para Scale space
Resumo:
The spatial processes deployed by the 15-M movement in Spain include elements of social change that exceed the limits of conventional politics. Located at a liminal level, these processes operate in the often unnoticed realm of the micro-politics of urban everyday life and the regimes of place that regulate it, providing new criteria for understanding sociospatial and urban phenomena. This article shows how public space, its representations and the spatialities associated with them have served as a support for, have determined and, ultimately, have been reshaped and transformed by the Spanish “indignados” (outraged), in particular in the city and the metropolitan area of Madrid. Drawing on a series of theoretical approaches to the articulation of recent revolts, the deployment of a prefigurative politics and the occupation of public space, I will give an experience-based account of the spatial constitution and effects of these connections in and around Madrid’s Puerta del Sol. As a whole, the indignados’ occupations and actions provide urban theory with conceptual and practical tools to imagine alternative forms of collective commitment in the production of spaces of hope for social progress and generalized self-management.
Resumo:
Comunicación presentada en el X Workshop of Physical Agents, Cáceres, 10-11 septiembre 2009.
Resumo:
Vela X–1 is the prototype of the class of wind-fed accreting pulsars in high-mass X-ray binaries hosting a supergiant donor. We have analysed in a systematic way 10 years of INTEGRAL data of Vela X–1 (22–50 keV) and we found that when outside the X-ray eclipse, the source undergoes several luminosity drops where the hard X-rays luminosity goes below ∼3 × 1035 erg s−1, becoming undetected by INTEGRAL. These drops in the X-ray flux are usually referred to as ‘off-states’ in the literature. We have investigated the distribution of these off-states along the Vela X–1 ∼ 8.9 d orbit, finding that their orbital occurrence displays an asymmetric distribution, with a higher probability to observe an off-state near the pre-eclipse than during the post-eclipse. This asymmetry can be explained by scattering of hard X-rays in a region of ionized wind, able to reduce the source hard X-ray brightness preferentially near eclipse ingress. We associate this ionized large-scale wind structure with the photoionization wake produced by the interaction of the supergiant wind with the X-ray emission from the neutron star. We emphasize that this observational result could be obtained thanks to the accumulation of a decade of INTEGRAL data, with observations covering the whole orbit several times, allowing us to detect an asymmetric pattern in the orbital distribution of off-states in Vela X–1.
Resumo:
Includes bibliographical references
Resumo:
Includes bibliographical references
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Optical coherence tomography (OCT) is an emerging coherence-domain technique capable of in vivo imaging of sub-surface structures at millimeter-scale depth. Its steady progress over the last decade has been galvanized by a breakthrough detection concept, termed spectral-domain OCT, which has resulted in a dramatic improvement of the OCT signal-to-noise ratio of 150 times demonstrated for weakly scattering objects at video-frame-rates. As we have realized, however, an important OCT sub-system remains sub-optimal: the sample arm traditionally operates serially, i.e. in flying-spot mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. The proposed technique, termed Fourier-domain OCT, offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems, and represents the main thrust of this paper. Fourier-domain OCT is described, and its basic theoretical aspects, including the reconstruction algorithm, are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present 547 optical redshifts obtained for galaxies in the region of the Horologium-Reticulum supercluster (HRS) using the 6 degrees field (6dF) multifiber spectrograph on the UK Schmidt Telescope at the Anglo-Australian Observatory. The HRS covers an area of more than 12 degrees x 12 degrees on the sky centered at approximately alpha = 03(h)19(m), delta = 50 degrees 02'. Our 6dF observations concentrate on the intercluster regions of the HRS, from which we describe four primary results. First, the HRS spans at least the redshift range from 17,000 to 22,500 km s(-1). Second, the overdensity of galaxies in the intercluster regions of the HRS in this redshift range is estimated to be 2.4, or delta rho/(rho) over bar similar to 1: 4. Third, we find a systematic trend of increasing redshift along a southeast-northwest spatial axis in the HRS, in that the mean redshift of HRS members increases by more than 1500 km s(-1) from southeast to northwest over a 12 degrees region. Fourth, the HRS is bimodal in redshift with a separation of similar to 2500 km s(-1) (35 Mpc) between the higher and lower redshift peaks. This fact is particularly evident if the above spatial-redshift trend is fitted and removed. In short, the HRS appears to consist of two components in redshift space, each one exhibiting a similar systematic spatial-redshift trend along a southeast-northwest axis. Lastly, we compare these results from the HRS with the Shapley supercluster and find similar properties and large-scale features.
Resumo:
As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.