939 resultados para Salts in soils


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rheological studies were carried out in the fermentation broth of a polysaccharide-producing microorganism free of soil. This microorganism was designated 4B. The bacteria 4B was inoculated in the fermentation broth, which consisted of a carbon source and mineral salts, and it was incubated in a rotating agitator at 30 degreesC for 72 h at 210 rpm. A rheometer of concentric cylinders equipped with a thermostatic bath was used and the readings were taken at 25 degreesC. A study was made of the influence of the fermentation time and the readings were made after 24, 48 and 72 h of incubation, using, separately, sucrose and glucose as carbon sources. The influence of the salt concentrations was determined in each carbon source; the salts used were NaCl, KCl and CaCl2 in the concentrations of 0.4%, 1.0%, 2.0% and 3.0%. It was observed that the fermentation broth behaves as a non-Newtonian fluid and it presents pseudoplastic behaviour. Calculations were made of the flow behaviour index (n) and the consistency index (k) of the samples after 24, 48 and 72 h of fermentation, and it was observed that the 72 h sample presented higher k and consequently higher apparent viscosity. of the carbon sources used, the sucrose presented higher viscous broths after 24 and 48 h, and the glucose after 72 h of fermentation. With relation to the effect of the addition of salts, the CaCl2 presented a higher influence on the viscosity of the fermentation broths. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetated riparian buffer strips have been established in Southern Quebec (Canada) in order to intercept nutrients such as nitrate (NO(3)(-)) and protect water quality near agricultural fields. Buffer strips may also favour denitrification through a combination of high soil moisture, NO(3)(-) and carbon supply, which could lead to the production of nitrous oxide (N(2)O), a greenhouse gas. Denitrification could be further amplified by the presence of earthworms, or by plant species that promote earthworm and bacterial activity in soils. Soils from four farms, comprising maize fields and adjacent buffer strips, were sampled in the fall of 2008. A total of six earthworm species were found, but average earthworm biomass did not differ between buffer strips and maize agroecoecosystems. Nitrate concentrations and net nitrification rates were higher in the maize fields than in the buffer strips: there was no difference in N(2)O production in soils collected from the two sampling locations. Potential denitrification, measured by acetylene inhibition, varied by two orders of magnitude, depending on experimental conditions: when amended with H(2)O or with H(2)O + NO3-, potential denitrification was higher (P < 0.05) in soils from buffer strips than from maize fields. Potential denitrification was highest in soils amended with H(2)O+glucose, or with H(2)O+ NO(3)(-) + glucose. Using microcosms, we tested the effect of litter-soil mixtures on earthworm growth, and the effect of earthworm-litter-soil mixtures on potential denitrification. Based on four categories of chemical assays, litters of woody species (oak, apple, Rhododendron) were generally of lower nutritional quality than litter from agronomic species (alfalfa, switchgrass, corn stover). Alfalfa litter had the most positive effect, whereas apple litter had the most negative effect, on earthworm growth. Potential denitrification was 2-4 times higher in earthworm-litter-soil mixtures than in plain soil. Litter treatments that included corn stover had lower potential denitrification than those that included alfalfa or switchgrass, whereas litter treatments that included oak had lower potential denitrification than those that included apple or Rhododendron. Results suggest that potential N(2)O emissions may be higher in riparian buffer strips than in adjacent maize fields, that N(2)O emissions in buffer strips may be amplified by comminuting earthworms, and that plant litters that reduce earthworm growth may not be best at mitigating N(2)O emissions. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to estimate the soil-water transit time using the variation in 18O values, a statistical model was used. This model is based on linear regression analysis applied to the values observed for soil water and rain water. The time obtained from these correlations represents the mean time necessary for the water to run from one collecting point to the next.-from Authors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infestation of weeds is a major biotic factor in the agroecosystem of cane sugar that may interfere in development and crop productivity. This study aimed to evaluate the potential for leaching and residual effects of the herbicide amicarbazone in contrasting soils. Samples were Quartzarenic Neosol (NR - sandy texture) and Red Latosol (LR - clay texture). For the leaching potential, after application of herbicide amicarbazone (NR 1.05 kg ha(-1) and LR 1.40 kg ha(-1)), layers of 0, 20, 40, 60, 80 and 100 mm of water were applied to soil columns. We evaluated the residual effect after the permanence of the herbicide in soil of clay texture and sandy for periods of 0, 25, 50, 75 and 100 days after application (DAA) of amicarbazone (0, 1.05, 1.40 kg ha(-1)) treatments. The amicarbazone started showing high leaching from the 60 mm layer of water in sandy texture soils, evidencing a shorter residual effect. In clay soil, slides from 20 to 80 mm of water reduced the biomass until a depth of 5-10 cm, with the use of this herbicide. Based on these results, we conclude that the amicarbazone showed higher leaching and lower residual effects in sandy soil. The residual effect of amicarbazone was prolonged as the content of clay and organic matter present in the soil increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil management practices are konwn to affect the biomass and enzyme activities of microbial soil communities. To assess whether burning of sugarcane prior to harvesting affects the community of soilborne fungi, we collected soil simples in two sites: burned sugarcane culture prior harvesting (BS) and non-burned sugarcane culture (NBS). A total of 75 filamentous fungal isolates were recovered from soils in both sites. Trichoderma was the most prevalent genus in both sites, followed by Fusarium, Cunninghamella and Aspergillus. The Sorensen's index (0.60) suggested a slight difference in fungi associated with both areas, with high number of fungal isolates found on BB soil. The abundance of Trichoderma isolates in NBS soil was higher than BS soil; however, the abundance of Fusarium, Aspergillus and Cunninghamella was higher in the latter type of soil. In addition, fungi isolated from BS soil showed the highest production of xylanase and laccase in comparision with fungi isolated form NBS soil. Our results indicate that the different types of sugarcane harvesting apparently did not interfere with the diversity of fungal communnities as revealed by culture-dependent methods. In addition, our data indicates the potencial of fungi from soils of sugarcane crops to produce relevant enzymes related to biomass conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of desiccation cracks in soils has received increasing attention in the last few years, in both experimental investigations and modeling. Experimental research has been mainly focused on the behavior of slurries subjected to drying in plates of different shapes, sizes and thickness. The main objectives of these studies were to learn about the process of crack formation under controlled environmental conditions, and also to better understand the effect of different factors (e.g. soil type, boundary conditions, soil thickness) on the morphology of the crack network. As for the numerical modeling, different approaches have been suggested lately to describe the behavior of drying cracks in soils. One aspect that it is still difficult to describe properly is the crack pattern observed in desiccated soils. This work presents a novel technique to model the behavior of drying soils. The crack patter observed in desiccation tests on circular plates are simulated with the main objective of predicting the effect of soil thickness on crack pattern. Good agreement between experimental results and model prediction are observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in bioavailability of phosphorus (P) during pedogenesis and ecosystem development have been shown for geogenic calcium phosphate (Ca-P). However, very little is known about long-term changes of biogenic Ca-P in soil. Long-term transformation characteristics of biogenic Ca-P were examined using anthropogenic soils along a chronosequence from centennial to millennial time scales. Phosphorus fractionation of Anthrosols resulted in overall consistency with the Walker and Syers model of geogenic Ca-P transformation during pedogenesis. The biogenic Ca-P (e.g., animal and fish bones) disappeared to 3% of total P within the first ca. 2,000 years of soil development. This change concurred with increases in P adsorbed on metal-oxides surfaces, organic P, and occluded P at different pedogenic time. Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the crystalline and therefore thermodynamically most stable biogenic Ca-P was transformed into more soluble forms of Ca-P over time. While crystalline hydroxyapatite (34% of total P) dominated Ca-P species after about 600-1,000 years, beta-tricalcium phosphate increased to 16% of total P after 900-1,100 years, after which both Ca-P species disappeared. Iron-associated P was observable concurrently with Ca-P disappearance. Soluble P and organic P determined by XANES maintained relatively constant (58-65%) across the time scale studied. Disappearance of crystalline biogenic Ca-P on a time scale of a few thousand years appears to be ten times faster than that of geogenic Ca-P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative C-13 nuclear magnetic resonance (NMR) spectroscopy, we show that Terra Preta soils (fertile anthropogenic dark earths in Amazonia that were enriched with char >800 years ago) consist predominantly of char residues composed of similar to 6 fused aromatic rings substituted by COO- groups that significantly increase the soils' cation-exchange capacity and thus the retention of plant nutrients. We also show that highly productive, grassland-derived soils in the U.S, (Mollisols) contain char (generated by presettlement fires) that is structurally comparable to char in the Terra Preta soils and much more abundant than previously thought (similar to 40-50% of organic C). Our findings indicate that these oxidized char residues represent a particularly stable, abundant, and fertility-enhancing form of soil organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The availability and uptake of Cd by lettuce (Lactuca sativa L.) in two common tropical soils (before and after liming) were studied in order to derive human health-based risk soil concentration. Cadmium concentrations ranging from 1 to 12 mg kg(-1) were added to samples from a clayey Oxisol and a sandy-loam Ultisol under glasshouse conditions. After incubation, a soil sample was taken from each pot, the concentration of Cd in the soil was determined, lettuce was grown during 36 d, and the edible parts were harvested and analyzed for Cd. A positive linear correlation was observed between total soil Cd and the Cd concentration in lettuce. The amount of Cd absorbed by lettuce grown in the Ultisol was about twice the amount absorbed in the Oxisol. Liming increased the soil pH and slightly reduced Cd availability and uptake. CaCl2 extraction was better than DTPA to reflect differences in binding strength of Cd between limed and unlimed soils. Risk Cd concentrations in the Ultisol were lower than in the Oxisol, reflecting the greater degree of uptake from the Ultisol. The derived risk Cd values were dependent on soil type and the exposure scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm-3 soil), 7 soil P levels supplied as phosphite (0-100 mg P dm-3 soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm-3 soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.