248 resultados para Salomaa, Ilona
Resumo:
To investigate how involvement preferences of patients with breast cancer change during the treatment decision-making process and determine the impact of meeting patients' expectations on decision-making outcomes.
Resumo:
To assess the relative impact of cognitive and emotional aspects of shared decision making (SDM) on patient outcomes.
Resumo:
BACKGROUND: The International Breast Cancer Study Group conducted a phase III trial in Australian/New Zealand (ANZ) and Swiss/German/Austrian (SGA) centres on training doctors in clear and ethical information delivery about treatment options and strategies to encourage shared decision making. METHODS: Medical, surgical, gynaecological and radiation oncologists, and their patients for whom adjuvant breast cancer therapy was indicated, were eligible. Doctors were randomised to participate in a workshop with standardised teaching material and role playing. Patients were recruited in the experimental and control groups before and after the workshop. RESULTS: In ANZ centres, 21 eligible doctors recruited a total of 304 assessable patients. In SGA centres, 41 doctors recruited 390 patients. The training was well accepted. There was no overall effect on patient decisional conflict (primary endpoint) 2 weeks after the consultation. Overall, patients were satisfied with their treatment decision, their consultation and their doctors' consultation skills. Considerable variation was observed in patient outcomes between SGA and ANZ centres; the effect sizes of the intervention were marginal (<0.2). CONCLUSIONS: Shared decision making remains a challenge. A sustained training effect may require more intensive training tailored to the local setting. Cross-cultural differences need attention in conducting trials on communication interventions.
Resumo:
BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1) or beta(3) isoforms, beta(2a) and beta(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal beta(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase"), reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2) expression. Additional evidence for the cause-effect relationship between beta(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible beta(2) cardiac overexpression. Here in non-failing hearts induction of beta(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of beta(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.
Resumo:
This randomized trial compared procedural complications and 30-day clinical outcomes of 3 patent foramen ovale (PFO) closure devices (Amplatzer, Helex, and CardioSEAL-STARflex). It examined 660 patients (361 men, 299 women, mean age 49.3+/-1.9 years), with 220 patients per group. All patients had a history of paradoxical embolism. All PFO closures were successful technically. Exchange of devices for others was most frequently required for the Helex occluder (7 of 220) and 2 of 220 in either of the other groups. Three device embolizations in the Helex group were retrieved and replaced successfully. One patient with a Helex occluder developed a transient ischemic attack and recovered without treatment. A hemopericardium in that group was punctured without affecting the device. One tamponade in the Amplatzer group required surgical device explantation. In 8 of 660 patients in the CardioSEAL-STARflex group, thrombi resolved after anticoagulation. Sixteen patients (11 in the CardioSEAL-STARflex group, 3 in the Amplatzer group, and 2 in the Helex group) had episodes of atrial fibrillation. PFOs were closed completely in 143 of 220 patients (65%) in the Amplatzer group, 116 of 220 patients (52.7%) in the Helex group, and 137 of 220 patients (62.3%) in the CardioSEAL-STARflex group at 30 days with significant differences between the Helex and Amplatzer occluders (p=0.0005) and the Helex and CardioSEAL-STARflex occluders (p=0.0003). PFO closure can be performed safely with each device. In conclusion, the Helex occluder embolized more frequently. Device thrombus formation and paroxysmal atrial fibrillation were more common with the CardioSEAL-STARflex occluder.
Resumo:
In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.
Resumo:
Plants have a remarkable potential for sustained (indeterminate) postembryonic growth. Following their specification in the early embryo, tissue-specific precursor cells first establish tissues and later maintain them postembryonically. The mechanisms underlying these processes are largely unknown. Here we define local control of oriented, periclinal cell division as the mechanism underlying both the establishment and maintenance of vascular tissue. We identify an auxin-regulated basic helix-loop-helix (bHLH) transcription factor dimer as a critical regulator of vascular development. Due to a loss of periclinal divisions, vascular tissue gradually disappears in bHLH-deficient mutants; conversely, ectopic expression is sufficient for triggering periclinal divisions. We show that this dimer operates independently of tissue identity but is restricted to a small vascular domain by integrating overlapping transcription patterns of the interacting bHLH proteins. Our work reveals a common mechanism for tissue establishment and indeterminate vascular development and provides a conceptual framework for developmental control of local cell divisions.
Resumo:
The human olfactory bulb (OB) is the first relay station of the olfactory pathway and may have the potential for postnatal neurogenesis in early childhood. In animals, chronic stress affects the OB and olfactory functioning. For humans, it has been shown that major depressive disorder is accompanied by reduced OB volume and reduced olfactory function. However, it is not clear if major stress in childhood development also affects olfactory functioning and OB volume in humans. OB volume was measured and olfactory function was tested in 17 depressive patients with and 10 without a history of severe childhood maltreatment (CM). CM patients exhibited a significantly reduced olfactory threshold and identification ability. The OB volume of the CM patients was significantly reduced to 80% of the non-CM patients. In conclusion, postnatal neurogenesis might be by reduced in CM, which may affect olfactory function of the brain in later life. Alternatively, a reduced OB volume may enhance psychological vulnerability in the presence of adverse childhood conditions although other areas not analyzed in this study may also be involved.
Resumo:
Chemicals selectively stimulating the olfactory nerve typically cannot be localized in a lateralization task. Purpose of this study was to investigate whether the ability of subjects to localize an olfactory stimulus delivered passively to 1 of the 2 nostrils would improve under training. Fifty-two young, normosmic women divided in 2 groups participated. One group performed olfactory lateralization training, whereas the other group performed cognitive tasks. Results showed that only subjects performing lateralization training significantly improved in their ability to lateralize olfactory stimuli compared with subjects who did not undergo such training.