926 resultados para SURFACTANT
Resumo:
Background During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.
Resumo:
The pulmonary route is very attractive for drug delivery by inhalation. In this regard, nanoparticulate drug delivery systems, designed as multifunctional engineered nanoparticles, are very promising since they combine several opportunities like a rather uniform distribution of drug dose among all ventilated alveoli allowing for uniform cellular drug internalization. However, although the field of nanomedicine offers multiple opportunities, it still is in its infancy and the research has to proceed in order to obtain a specific targeting of the drug combined with minimum side effects. If inhaled nanoparticulate drug delivery systems are deposited on the pulmonary surfactant, they come into contact with phospholipids and surfactant proteins. It is highly likely that the interaction of nanoparticulate drug delivery systems with surfactant phospholipids and proteins will be able to mediate/modulate the further fate of this specific drug delivery system. In the present comment, we discuss the potential interactions of nanoparticulate drug delivery systems with pulmonary surfactant as well as the potential consequences of this interaction.
Resumo:
Exogenous surfactant is an undisputed treatment for neonatal respiratory distress syndrome but its efficacy is highly dependent on the treatment strategy. International guidelines have published recommendations on the optimal surfactant replacement strategy.
Resumo:
Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1(-/-) lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. Contrary to predictions, bacterial counts in the lungs of SP-D(low)serpinB1(-/-) and SP-D(high) serpinB1(-/-) mice were 4 logs higher than wild-type and not different from serpinB1(-/-) mice. SP-D overexpression also failed to mitigate inflammation (TNF-α), lung injury (free protein, albumin), or excess neutrophil death (free myeloperoxidase, elastase). These pathological markers were higher for infected SP-D(high)serpinB1(-/-) mice than for serpinB1(-/-) mice, although the differences were not significant after controlling for multiple comparisons. The failure of transgenic SP-D to rescue antibacterial defense of serpinB1-deficient mice occurred despite 5-fold or 20-fold increased expression levels, largely normal structure, and dose-dependent bacteria-aggregating activity. SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-D(low)serpinB1(-/-), SP-D(high) serpinB1(-/-) mice, and serpinB1(-/-) mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis.
Resumo:
Background Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated. Methods SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells), human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4+ T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array. Results SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake) and led to a decreased secretion of pro-inflammatory cytokines. Conclusion These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.
Resumo:
Background Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i) human monocyte derived macrophages (MDM) monocultures, and (ii) a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf) or not. The effect of MWCNTs surface charge was also investigated in terms of amino (−NH2) and carboxyl (−COOH) surface modifications. Results Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α). In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8) was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. Conclusions The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary surfactant should be considered for future lung in vitro risk assessment studies. Keywords: Multi-walled carbon nanotubes (MWCNTs); Pulmonary surfactant (Curosurf); Macrophages; Epithelial cells; Dendritic cells; Triple cell co-culture; Pro-inflammatory and oxidative reactions
Resumo:
In addition to particle size and surface chemistry, the shape of particles plays an important role in their wetting and displacement by the surfactant film in the lung. The role of particle shape was the subject of our investigations using a model system consisting of a modified Langmuir-Wilhelmy surface balance. We measured the influence of sharp edges (lines) and other highly curved surfaces, including sharp corners or spikes, of different particles on the spreading of a dipalmitoylphosphatidyl (DPPC) film. The edges of cylindrical sapphire plates (circular curved edges, 1.65 mm radius) were wetted at a surface tension of 10.7 mJ/m2 (standard error (SE) = 0.45, n = 20) compared with that of 13.8 mJ/m2 (SE = 0.20, n = 20) for cubic sapphire plates (straight linear edges, edge length 3 mm) (p < 0.05). The top surfaces of the sapphire plates (cubic and cylindrical) were wetted at 8.4 mJ/m2 (SE = 0.54, n = 20) and 9.1 mJ/m2 (SE = 0.50, n = 20), respectively, but the difference was not significant (p > 0.05). The surfaces of the plates showed significantly higher resistance to spreading compared to that of the edges, as substantially lower surface tensions were required to initiate wetting (p < 0.05). Similar results were found for talc particles, were the edges of macro- and microcrystalline particles were wetted at 7.2 mJ/m2 (SE = 0.52, n = 20) and 8.2 mJ/m2 (SE = 0.30, n = 20) (p > 0.05), respectively, whereas the surfaces were wetted at 3.8 mJ/m2 (SE = 0.89, n = 20) and 5.8 mJ/m2 (SE = 0.52, n = 20) (p < 0.05), respectively. Further experiments with pollen of malvaceae and maize (spiky and fine knobbly surfaces) were wetted at 10.0 mJ/m2 (SE = 0.52, n = 10) and 22.75 mJ/m2 (SE = 0.81, n = 10), respectively (p < 0.05). These results show that resistance to spreading of a DPPC film on various surfaces is dependent on the extent these surfaces are curved. This is seen with cubic sapphire plates which have at their corners a radius of curvature of about 0.75 microm, spiky malvaceae pollen with an even smaller radius on top of their spikes, or talc with various highly curved surfaces. These highly curved surfaces resisted wetting by the DPPC film to a higher degree than more moderately curved surfaces such as those of cylindrical sapphire plates, maize pollens, or polystyrene spheres, which have a surface free energy similar to that of talc but a smooth surface. The macroscopic plane surfaces of the particles demonstrated the greatest resistance to spreading. This was explained by the extremely fine grooves in the nanometer range, as revealed by electron microscopy. In summary, to understand the effects of airborne particles retained on the surfaces of the respiratory tract, and ultimately their pathological potential, not only the particle size and surface chemistry but also the particle shape should be taken in consideration.
Resumo:
BACKGROUND: Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM) and stereology allows the differentiation of active (large aggregates = LA) and inactive (small aggregates = SA) subtypes. METHODS: To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf), Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL), multilamellar vesicles (MV), unilamellar vesicles (UV)] were determined stereologically. RESULTS: All preparations contained LBL and MV (corresponding to LA) as well as UV (corresponding to SA). The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV) ratio (resembling the SA/LA ratio) increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. CONCLUSION: Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation.
Resumo:
RATIONALE: ABCA3 mutations are known to cause fatal surfactant deficiency. OBJECTIVE: We studied ABCA3 protein expression in full-term newborns with unexplained respiratory distress syndrome (URDS) as well as the relevance of ABCA3 mutations for surfactant homeostasis. METHODS: Lung tissue of infants with URDS was analyzed for the expression of ABCA3 in type II pneumocytes. Coding exons of the ABCA3 gene were sequenced. Surfactant protein expression was studied by immunohistochemistry, immunoelectron microscopy, and Western blotting. RESULTS: ABCA3 protein expression was found to be greatly reduced or absent in 10 of 14 infants with URDS. Direct sequencing revealed distinct ABCA3 mutations clustering within vulnerable domains of the ABCA3 protein. A strong expression of precursors of surfactant protein B (pro-SP-B) but only low levels and aggregates of mature surfactant protein B (SP-B) within electron-dense bodies in type II pneumocytes were found. Within the matrix of electron-dense bodies, we detected precursors of SP-C (pro-SP-C) and cathepsin D. SP-A was localized in small intracellular vesicles, but not in electron-dense bodies. SP-A and pro-SP-B were shown to accumulate in the intraalveolar space, whereas mature SP-B and SP-C were reduced or absent, respectively. CONCLUSION: Our data provide evidence that ABCA3 mutations are associated not only with a deficiency of ABCA3 but also with an abnormal processing and routing of SP-B and SP-C, leading to severe alterations of surfactant homeostasis and respiratory distress syndrome. To identify infants with hereditary ABCA3 deficiency, we suggest a combined diagnostic approach including immunohistochemical, ultrastructural, and mutation analysis.
Resumo:
The adsorption of anionic, carboxyl functionalized latex particles, recharged by a cationic surfactant acting as fabric softener/conditioner, to a cellulose surface was investigated with evanescent wave video microscopy. This technique allows to monitor the deposition and release of individual particles in real-time with an excellent selectivity and sensitivity. Since the recharged particles and the conditioner compete for the free surface, the initial deposition rate and final surface coverage are found to be strongly dependent on the ratio of particle and conditioner concentrations.
Resumo:
BACKGROUND: Pulmonary inflammation after cardiac surgery with cardiopulmonary bypass (CPB) has been linked to respiratory dysfunction and ultrastructural injury. Whether pretreatment with methylprednisolone (MP) can preserve pulmonary surfactant and blood-air barrier, thereby improving pulmonary function, was tested in a porcine CPB-model. MATERIALS AND METHODS: After randomizing pigs to placebo (PLA; n = 5) or MP (30 mg/kg, MP; n = 5), animals were subjected to 3 h of CPB with 1 h of cardioplegic cardiac arrest. Hemodynamic data, plasma tumor necrosis factor-alpha (TNF-alpha, ELISA), and pulmonary function parameters were assessed before, 15 min after CPB, and 8 h after CPB. Lung biopsies were analyzed for TNF-alpha (Western blot) or blood-air barrier and surfactant morphology (electron microscopy, stereology). RESULTS: Systemic TNF-alpha increased and cardiac index decreased at 8 h after CPB in PLA (P < 0.05 versus pre-CPB), but not in MP (P < 0.05 versus PLA). In both groups, at 8 h after CPB, PaO(2) and PaO(2)/FiO(2) were decreased and arterio-alveolar oxygen difference and pulmonary vascular resistance were increased (P < 0.05 versus baseline). Postoperative pulmonary TNF-alpha remained unchanged in both groups, but tended to be higher in PLA (P = 0.06 versus MP). The volume fraction of inactivated intra-alveolar surfactant was increased in PLA (58 +/- 17% versus 83 +/- 6%) and MP (55 +/- 18% versus 80 +/- 17%) after CPB (P < 0.05 versus baseline for both groups). Profound blood-air barrier injury was present in both groups at 8 h as indicated by an increased blood-air barrier integrity score (PLA: 1.28 +/- 0.03 versus 1.70 +/- 0.1; MP: 1.27 +/- 0.08 versus 1.81 +/- 0.1; P < 0.05). CONCLUSION: Despite reduction of the systemic inflammatory response and pulmonary TNF-alpha generation, methylprednisolone fails to decrease pulmonary TNF-alpha and to preserve pulmonary surfactant morphology, blood-air barrier integrity, and pulmonary function after CPB.
Resumo:
Pulmonary surfactant prevents alveolar collapse via reduction of surface tension. In contrast to human neonates, rats are born with saccular lungs. Therefore, rat lungs serve as a model for investigation of the surfactant system during postnatal alveolar formation. We hypothesized that this process is associated with characteristic structural and biochemical surfactant alterations. We aimed to discriminate changes related to alveolarization from those being either invariable or follow continuous patterns of postnatal changes. Secreted active (mainly tubular myelin (tm)) and inactive (unilamellar vesicles (ulv)) surfactant subtypes as well as intracellular surfactant (lamellar bodies (lb)) in type II pneumocytes (PNII) were quantified before (day (d) 1), during (d 7), at the end of alveolarization (d 14), and after completion of lung maturation (d 42) using electron microscopic methods supplemented by biochemical analyses (phospholipid quantification, immunoblotting for SP-A). Immunoelectron microscopy determined the localization of surfactant protein A (SP-A). (1) At d 1 secreted surfactant was increased relative to d 7-42 and then decreased significantly. (2) Air spaces of neonatal lungs comprised lower fractions of tm and increased ulv, which correlated with low SP-A concentrations in lung lavage fluid (LLF) and increased respiratory rates, respectively. (3) Alveolarization (d 7-14) was associated with decreasing PNII size although volume and sizes of Lb continuously increased. (4) The volume fractions of Lb correlated well with the pool sizes of phospholipids in lavaged lungs. Our study emphasizes differential patterns of developmental changes of the surfactant system relative to postnatal alveolarization.
Resumo:
PURPOSE: To evaluate the expression and presence of surfactant protein (SP) A and SP-D in the lacrimal apparatus, at the ocular surface, and in tears in healthy and pathologic states. METHODS: Expression of mRNA for SP-A and SP-D was analyzed by RT-PCR in healthy lacrimal gland, conjunctiva, cornea, and nasolacrimal ducts as well as in a spontaneously immortalized conjunctival epithelial cell line (HCjE; IOBA-NHC) and a SV40-transfected cornea epithelial cell line (HCE). Deposition of SP-A and SP-D was determined by Western blot, dot blot, and immunohistochemistry in healthy tissues, in tears, aqueous humor, and in sections of different corneal abnormalities (keratoconus, herpetic keratitis, and Staphylococcus aureus-based ulceration). Cell lines were stimulated with different cytokines and bacterial components and were analyzed for the production of SP-A and SP-D by immunohistochemistry. RESULTS: The presence of SP-A and SP-D on mRNA and protein levels was evidenced in healthy lacrimal gland, conjunctiva, cornea, and nasolacrimal duct samples. Moreover, both proteins were present in tears but were absent in aqueous humor. Immunohistochemistry revealed the production of both peptides by acinar epithelial cells of the lacrimal gland and epithelial cells of the conjunctiva and nasolacrimal ducts, whereas goblet cells revealed no reactivity. Healthy cornea revealed weak reactivity on epithelial surface cells only. In contrast, SP-A and SP-D revealed strong reactivity in patients with herpetic keratitis and corneal ulceration surrounding lesions and in several immigrated defense cells. Reactivity in corneal epithelium and endothelium was also seen in patients with keratoconus. Cell culture experiments revealed that SP-A and SP-D are produced by both epithelial cell lines without and after stimulation with cytokines and bacterial components. CONCLUSIONS: These results show that SP-A, in addition to SP-D, is a peptide of the tear film. Based on the known direct and indirect antimicrobial effects of collectins, the surfactant-associated proteins A and D seem to be involved in several ocular surface diseases.