974 resultados para SUPRAMOLECULAR SOFT MATERIALS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many investigations have shown that the electrical resistance of soft annealed metals is usually smaller than that of metals in their hard, cold worked state. By annealing cold-worked metals, the electrical resistance decreases to a minimum and then increases upon continued annealing at higher temperatures. The work performed in this investigation upon silver, aluminum, copper, nickel, and soft steel corroborates this idea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To evaluate the biologic width dimensions around implants with nonmatching implant-abutment diameters. MATERIALS AND METHODS Five canines had their mandibular premolars and first molars removed bilaterally and replaced with 12 implants that had nonmatching implant-abutment diameters. On one side, six implants were placed in a submerged surgical approach, and the other side utilized a nonsubmerged approach. Two of the implants on each side were placed either 1 mm above, even with, or 1 mm below the alveolar crest. Two months later, gold crowns were attached, and the dogs were sacrificed 6 months postloading. Block sections were processed for histologic and histomorphometric analyses. RESULTS The bone level, connective tissue length, epithelial dimension, and biologic width were not significantly different when the implants were initially placed in a submerged or nonsubmerged surgical approach. The bone level was significantly different around implants placed 1 mm above the crest compared to implants placed even with or 1 mm below the alveolar crest. The connective tissue dimension was not different for any implant level placement. The epithelial dimension and biologic width were significantly greater for implants placed 1 mm below the alveolar crest compared to implants placed even with or 1 mm above the alveolar crest. For five of six implant placements, connective tissue covered the implant/abutment interface. CONCLUSIONS This study reveals a fundamental change in the biologic response to implants with nonmatching implant-abutment diameters. Unlike implants with matching implant-abutment diameters, the connective tissue extended coronally past the interface (microgap). This morphologic tissue alteration represents a significant change in the biologic reaction to implant-abutment interfaces and suggests that marginal inflammation is eliminated or greatly reduced in these implant designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. 2D polymers are attractive objects for the field of material sciences due to their exceptional properties. [1] As shown before, amphiphilic oligopyrenotides (produced via automated solid-phase synthesis) form rod–like supramolecular polymers in water. [2] These assemblies form 1D objects. [3] By applying certain changes to the design of the oligopyrenotide units the dimensionality of the formed assemblies can be influenced. Herein, we demonstrate that Py3 (see Figure 1) forms defined supramolecular assemblies under thermodynamic conditions in water. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM). The obtained results suggest that oligopyrenotides with the present type of geometry and linker length leads to formation of 2D supramolecular assemblies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porphyrin-containing materials are attractive objects for advanced light-harvesting systems [1]. Despite existence of numerous approaches to arrange porphyrines in a controlled and programmed way and therefore mimic natural photosynthetic systems, the problem of porphyrin`s arraying remains challenging [2]. Herein, we present an approach based on using DNA as a scaffold to hold porphyrines together. The whole spectroscopic investigation of the compounds containing several porphyrines and a possibility of their usage as molecular blocks for functional supramolecular architectures is discussed [3].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures [1]. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. Herein, we demonstrate that designed molecule Py3 forms dimensionally - defined supramolecular assemblies under thermodynamic conditions in water [2]. To study Py3 self-assembly, we carried out whole set of spectroscopic and microscopic experiments. The factors influencing stability, morphology and behavior of «nanosheets» in multicomponent systems are discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aromatic pi–pi stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH) hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI), and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic pi–pi stacking interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To assess the indication and timing of soft tissue augmentation for prevention or treatment of gingival recession when a change in the inclination of the incisors is planned during orthodontic treatment. MATERIALS AND METHODS Electronic database searches of literature were performed. The following electronic databases with no restrictions were searched: MEDLINE, EMBASE, Cochrane, and CENTRAL. Two authors performed data extraction independently using data collection forms. RESULTS No randomized controlled trial was identified. Two studies of low-to-moderate level of evidence were included: one of prospective and retrospective data collection and one retrospective study. Both implemented a periodontal intervention before orthodontics. Thus, best timing of soft tissue augmentation could not be assessed. The limited available data from these studies appear to suggest that soft tissue augmentation of bucco-lingual gingival dimensions before orthodontics may yield satisfactory results with respect to the development or progression of gingival recessions. However, the strength of the available evidence is not adequate in order to change or suggest a possible treatment approach in the daily practice based on solid scientific evidence. CONCLUSIONS Despite the clinical experience that soft tissue augmentation of bucco-lingual gingival dimensions before orthodontic treatment may be a clinically viable treatment option in patients considered at risk, this treatment approach is not based on solid scientific evidence. Moreover, the present data do not allow to draw conclusions on the best timing of soft tissue augmentation when a change in the inclination of the incisors is planned during orthodontic treatment and thus, there is a stringent need for randomized controlled trials to clarify these open issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantum dimer model on the square lattice is a U(1) gauge theory that addresses aspects of the physics of high-Tc superconductors. Using a quantum Monte Carlo method, we show that the theory exists in a confining columnar valence bond solid phase. The interfaces separating distinct columnar phases display plaquette order, which, however, is not realized as a bulk phase. Static “electric” charges are confined by flux tubes that consist of multiple strands, each carrying a fractionalized flux ¼. A soft pseudo-Goldstone mode (which becomes exactly massless at the Rokhsar-Kivelson point) extends deep into the columnar phase, with potential implications for high-Tc physics.