954 resultados para SUGAR-BEET
Resumo:
The physiological significance of the presence of GLUT2 at the food-facing pole of intestinal cells is addressed by a study of fructose absorption in GLUT2-null and control mice submitted to different sugar diets. Confocal microscopy localization, protein and mRNA abundance, as well as tissue and membrane vesicle uptakes of fructose were assayed. GLUT2 was located in the basolateral membrane of mice fed a meal devoid of sugar or containing complex carbohydrates. In addition, the ingestion of a simple sugar meal promoted the massive recruitment of GLUT2 to the food-facing membrane. Fructose uptake in brush-border membrane vesicles from GLUT2-null mice was half that of wild-type mice and was similar to the cytochalasin B-insensitive component, i.e. GLUT5-mediated uptake. A 5 day consumption of sugar-rich diets increased fructose uptake fivefold in wild-type tissue rings when it only doubled in GLUT2-null tissue. GLUT5 was estimated to contribute to 100 % of total uptake in wild-type mice fed low-sugar diets, falling to 60 and 40 % with glucose and fructose diets respectively; the complement was ensured by GLUT2 activity. The results indicate that basal sugar uptake is mediated by the resident food-facing SGLT1 and GLUT5 transporters, whose mRNA abundances double in long-term dietary adaptation. We also observe that a large improvement of intestinal absorption is promoted by the transient recruitment of food-facing GLUT2, induced by the ingestion of a simple-sugar meal. Thus, GLUT2 and GLUT5 could exert complementary roles in adapting the absorption capacity of the intestine to occasional or repeated loads of dietary sugars.
Resumo:
Selostus: WTO:n kauppaneuvotteluissa esitettyjen tuontitullien alentamisvaihtoehtojen vaikutukset EU:n sokerimarkkinoihin
Resumo:
Nanotiltration is a membrane separation method known for its special characteristic of rejecting multivalent ions and passing monovalent ions. Thus, it is commonly applied with dilute aqueous solutions in partial salt removal, like in drinking water production. The possibilities of nanofiltration have been studied and the technique applied in a wide branch of industries, e.g. the pulp and paper, the textile and the chemical processing industry. However, most present applications and most of the potential applications studied involve dilute solutions, the permeating stream being generally water containing monovalent salts. In this study nanotiltration is investigated more as a fractionation method. A well-known application in the dairy industry is concentration and partial salt removal from whey. Concentration and partial demineralization is beneficial for futher processing of whey as whey concentrates are used e.g. in baby foods. In the experiments of this study nanotiltration effectively reduced the monovalent salts in the whey concentrate. The main concern in this application is lactose leakage into the permeate. With the nanofiltration membranes used the lactose retentions were practically ? 99%. Another dairy application studied was the purification and reuse of cleaning solutions. This is an environmentally driven application. An 80% COD reduction by nanofiltration was observed for alkaline cleaning-in-place solution. Nanofiltration is not as commonly applied in the sugar and sweeteners industry as in the dairy industry. In this study one potential application was investigated, namely xylose purification from hemicellulose hydrolyzate. Xylose is raw material for xylitol production. Xylose separation from glucose was initially studied with xylose-glucose model solutions. The ability of nanofiltration to partially separate xylose into the permeate from rather concentrated xylose-glucose solutions (10 w-% and 30 w-%) became evident. The difference in size between xylose and glucose molecules according to any size measure is small, e.g. the Stokes diameter of glucose is 0.73 nm compared to 0.65 nm for xylose. In further experiments, xylose was purified into nanoliltration permeate from a hemicellulose hydrolyzate solution. The xylose content in the total solids was increased by 1.4—1.7 fold depending on temperature, pressure and feed composition.
Resumo:
Refers To Deborah L Harris, Philip J Weston, Matthew Signal, J Geoffrey Chase, Jane E Harding Dextrose gel for neonatal hypoglycaemia (the Sugar Babies Study): a randomised, double-blind, placebo-controlled trial The Lancet, Volume 382, Issue 9910, 21 December 2013-3 January 2014, Pages 2077-2083 Referred to by Jane E Harding, Deborah L Harris, Philip J Weston, Matthew Signal, Geoffrey Chase Sublingual sugar for infant hypoglycaemia - Authors' reply The Lancet, Volume 383, Issue 9924, 5-11 April 2014, Pages 1208-1209
Resumo:
ABSTRACT The flavor quality of citrus fruits is largely determined by the sugar-acid ratio, but it remains uncertain how sugar- and/or acid-metabolizing enzymes regulate the sugar-acid ratio of navel oranges and further affect the fruit quality. In the present study, Robertson navel oranges (Citrus sinesis Osb.) were collected from six representative habitats in three eco-regions of Sichuan, China. The changes in the sugar-acid ratio and the activities of sucrose phosphate synthase (SPS), sucrose synthase (SS), cytosolic cio-aconitase (ACO), and isocitrate dehydrogenase (IDH) were examined in navel oranges during fruit development. The results indicated that the sugar-acid ratio of fruits in different eco-regions changed significantly from 150 days after full bloom. The SPS and cytosolic ACO fruit activities had minor changes among different ecoregions throughout the experimental periods, whereas the activities of SS and IDH changed significantly in fruits among three eco-regions. Furthermore, the sugar-acid ratio and the activities of SS in the synthetic direction and IDH were the highest in south subtropics and the lowest in north mid-subtropics, probably due to the effects of climate conditions and/or other relevant eco-factors. It demonstrated that SS in the synthetic direction and IDH were of greater importance in regulating the sugar-acid ratio of navel oranges in different eco-regions, which provided new insights into the factors that determine the flavor quality of navel oranges and valuable data for guiding relevant agricultural practices.
Resumo:
OBJECTIVE: To test the hypothesis that substituting artificially sweetened beverages (ASB) for sugar-sweetened beverages (SSB) decreases intrahepatocellular lipid concentrations (IHCL) in overweight subjects with high SSB consumption. METHODS: About 31 healthy subjects with BMI greater than 25 kg/m(2) and a daily consumption of at least 660 ml SSB were randomized to a 12-week intervention in which they replaced SSBs with ASBs. Their IHCL (magnetic resonance spectroscopy), visceral adipose tissue volume (VAT; magnetic resonance imaging), food intake (2-day food records), and fasting blood concentrations of metabolic markers were measured after a 4-week run-in period and after a 12-week period with ASB or control (CTRL). RESULTS: About 27 subjects completed the study. IHCL was reduced to 74% of the initial values with ASB (N = 14; P < 0.05) but did not change with CTRL. The decrease in IHCL attained with ASB was more important in subjects with IHCL greater than 60 mmol/l than in subjects with low IHCL. ALT decreased significantly with SSB only in subjects with IHCL greater than 60 mmol/l. There was otherwise no significant effect of ASB on body weight, VAT, or metabolic markers. CONCLUSIONS: In subjects with overweight or obesity and a high SSB intake, replacing SSB with ASB decreased intrahepatic fat over a 12-week period.
Resumo:
Sugar intake has dramatically increased during the last few decades. Specifically, there has been a clear trend towards higher consumption of fructose and high fructose corn syrup, which are the most common added sugars in processed food, soft drinks and other sweetened beverages. Although still controversial, this rising trend in simple sugar consumption has been positively associated with weight gain and obesity, insulin resistance and type 2 diabetes mellitus and non-alcoholic fatty liver disease. Interestingly, all of these metabolic alterations have also been related to the development of hepatocellular carcinoma. The purpose of this review is to discuss the evidence coming from epidemiological studies and data from animal models relating the consumption of simple sugars, and specifically fructose, with an increased risk of hepatocellular carcinoma and to gain insight into the putative molecular mechanisms involved.
Resumo:
A method employing chitosan as complexant agent in the removal of copper(II) ions generally present in the Brazilian cachaça samples is herein proposed. The efficiency of this method is attributed to its high capacity of metal cations adsorption, mainly due to presence of hydroxyl and amine groups that can serve as chelating sites. The removal of copper(II) ions from this alcoholic beverage was efficient employing either in column and batch system. The analysis were carried out employing the flame atomic absorption spectrometry and the remaining copper(II) concentrations in the treated cachaça were lower than LOD of FAAS technique.
Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation
Resumo:
Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated by the sediment and that the collector organisms as Chironomus species accumulated higher concentration of metals than the predator organisms.
Resumo:
This work presents the results of a study on the hydration of pastes containing calcium hydroxide and either rice husk ash (RHA) or sugar cane bagasse ash (SCBA) in various initial CaO/SiO2 molar ratios. The products of the reactions were characterized by thermal analyses X-ray diffraction, and scanning electron microscopy. In the case of the RHA pastes, the product was composed of CaO-SiO2-H2O (type I C-S-H) or CaO-SiO2-H2O (type II C-S-H) according to the CaO/SiO2 ratio of the mixture. In contrast, in the case of the SBCA pastes, the product was composed primarily of CaO-SiO2-H2O that differed from both the previous types; the product also contained inclusions of calcium aluminate hydrates.
Resumo:
The determination of the total calcium in juice, syrups, and other products of the sugar industry is investigated. Total calcium and free calcium is determinated by AAS and employing Ca-selective electrode respectively. A coefficient is obtained for the relation of total calcium with respect to free calcium. The coefficient is employed to determine the content of total calcium in accordance with the following equation.
Resumo:
A method has been developed for the simultaneous determination of Cd and Pb in antibiotics used in sugar-cane fermentation by GFAAS. The integrated platform of transversely heated graphite atomizer was treated with tungsten to form a coating of tungsten carbide. Six samples of commercial solid antibiotics were analyzed by injecting 20 µL of digested samples into the pretreated graphite platform with co-injection of 5 µL of 1000 mg L-1 Pd as chemical modifier. Samples were mineralized in a closed-vessel microwave-assisted acid-digestion system using nitric acid plus hydrogen peroxide. The pyrolysis and atomization temperatures of the heating program of the atomizer were selected as 600°C and 2200°C, respectively. The calculated characteristic mass for Cd and Pb was 1.6 pg and 42 pg, respectively. Limits of detection (LOD) based on integrated absorbance were 0.02 µg L-1 Cd and 0.7 µg L-1 Pb and the relative standard deviations (n = 10) for Cd and Pb were 5.7% and 8.0%, respectively. The recoveries of Cd and Pb added to the digested samples varied from 91% to 125% (Cd) and 80% to 112% (Pb).
Resumo:
The adsorption kinetics and equilibrium of methylene blue (MB) onto reticulated formic lignin (RFL) from sugar cane bagasse was studied. The adsorption process is pH, temperature and ionic strength (µ) dependent and obeys the Langmuir model. Conditions for higher adsorption rate and capacity were determined. The faster adsorption (12 hours) and higher adsorption capacity (34.20 mg.g-1) were observed at pH = 5.8 (acetic acid-sodium acetate aqueous buffer), 50 ºC and 0.1 ionic strength. Under temperature (50 ºC) control and occasional mechanical stirring it took from 1 to 10 days to reach the equilibrium.
Resumo:
A field experiment conducted with the irrigated rice cultivar BRS Formoso, to assess the efficiency of calcinated serpentinite as a silicon source on grain yield was utilized to study its effect on leaf blast severity and tissue sugar levels. The treatments consisted of five rates of calcinated serpentinite (0, 2, 4, 6, 8 Mg.ha-1) incorporated into the soil prior to planting. The leaf blast severity was reduced at the rate of 2.96% per ton of calcinated serpentinite. The total tissue sugar content decreased significantly as the rates of serpentinite applied increased (R² = 0.83). The relationship between the tissue sugar content and leaf blast severity was linear and positive (R² = 0.81). The decrease in leaf blast severity with increased rates of calcinated serpentinite was also linear (R²= 0.96) and can be ascribed to reduced sugar level.
Resumo:
ABSTRACT In the present study, the influence of temperature (15, 20, 25, 30 and 35°C) and leaf wetness period (6, 12, 24 and 48 hours) on the severity of Cercospora leaf spot of beet, caused by Cercospora beticola, was studied under controlled conditions. Lesion density was influenced by temperature and leaf wetness duration (P<0.05). Data were subjected to nonlinear regression analysis. The generalized beta function was used for fitting the disease severity and temperature data, while a logistic function was chosen to represent the effect of leaf wetness on the severity of Cercospora leaf spot. The response surface resultant of the product of the two functions was expressed as ES = 0.0001105 * (((x-8)2.294387) * ((36-x)0.955017)) * (0.39219/(1+25.93072 * exp (-0.16704*y))), where: ES represents the estimated severity value (0.1); x, the temperature (ºC) and y, the leaf wetness duration (hours). This model should be validated under field conditions to assess its use as a computational forecast system for Cercospora leaf spot of beet.