972 resultados para STRUCTURAL ADJUSTMENT
Resumo:
In plant cells, myosin is believed to be the molecular motor responsible for actin-based motility processes such as cytoplasmic streaming and directed vesicle transport. In an effort to characterize plant myosin, a cDNA encoding a myosin heavy chain was isolated from Arabidopsis thaliana. The predicted product of the MYA1 gene is 173 kDa and is structurally similar to the class V myosins. It is composed of the highly-conserved NH2-terminal "head" domain, a putative calmodulin-binding "neck" domain an alpha-helical coiled-coil domain, and a COOH-terminal domain. Northern blot analysis shows that the Arabidopsis MYA1 gene is expressed in all the major plant tissues (flower, leaf, root, and stem). We suggest that the MYA1 myosin may be involved in a general intracellular transport process in plant cells.
Resumo:
The emphasis on inclusion of diverse learners presents challenges to teachers, particularly those whose understandings have been framed by notions of school readiness and special education of children with disabilities or learning difficulties. This mixed method study of early years children and teachers across three school sites in Australia explored factors associated with children’s development, achievement and adjustment. The focus went beyond organizational or structural issues to consider pedagogic responses to diverse learners from the kindergarten class through Year 1 and Year 2. The study identified factors influencing children’s outcomes, and highlighted areas of tension between inclusive policies and normative understandings that have implications for teachers’ professional learning.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
This paper treats the seismic mitigation of medium rise frame-shear wall structures and building facade systems using passive damping devices. The frame shear wall structures have embedded viscoelastic and friction dampers in different configurations and placed in various locations in the structure. Influence of damper type, configuration and location are investigated. Results for tip deflections which provide an overall evaluation of the seismic response of the structure, are determined. Seismic mitigation of building facade systems in which visco-elastic dampers are fitted at the horizontal connections between the facades and the frame, instead of the traditional rigid connections, are also treated. Finite element techniques are used to model and analyse the two structural systems under different earthquake loadings, scaled to the same peak ground acceleration for meaningful comparison of responses. Results demonstrate the feasibility of these techniques for seismic mitigation.
Resumo:
Objective Theoretical models of post-traumatic growth (PTG) have been derived in the general trauma literature to describe the post-trauma experience that facilitates the perception of positive life changes. To develop a statistical model identifying factors that are associated with PTG, structural equation modelling (SEM) was used in the current study to assess the relationships between perception of diagnosis severity, rumination, social support, distress, and PTG. Method A statistical model of PTG was tested in a sample of participants diagnosed with a variety of cancers (N=313). Results An initial principal components analysis of the measure used to assess rumination revealed three components: intrusive rumination, deliberate rumination of benefits, and life purpose rumination. SEM results indicated that the model fit the data well and that 30% of the variance in PTG was explained by the variables. Trauma severity was directly related to distress, but not to PTG. Deliberately ruminating on benefits and social support were directly related to PTG. Life purpose rumination and intrusive rumination were associated with distress. Conclusions The model showed that in addition to having unique correlating factors, distress was not related to PTG, thereby providing support for the notion that these are discrete constructs in the post-diagnosis experience. The statistical model provides support that post-diagnosis experience is simultaneously shaped by positive and negative life changes and that one or the other outcome may be prevalent or may occur concurrently. As such, an implication for practice is the need for supportive care that is holistic in nature.
Resumo:
This paper demonstrates the application of a robust form of pose estimation and scene reconstruction using data from camera images. We demonstrate results that suggest the ability of the algorithm to rival methods of RANSAC based pose estimation polished by bundle adjustment in terms of solution robustness, speed and accuracy, even when given poor initialisations. Our simulated results show the behaviour of the algorithm in a number of novel simulated scenarios reflective of real world cases that show the ability of the algorithm to handle large observation noise and difficult reconstruction scenes. These results have a number of implications for the vision and robotics community, and show that the application of visual motion estimation on robotic platforms in an online fashion is approaching real-world feasibility.
Resumo:
This study investigated personal and social processes of adjustment at different stages of illness for individuals with brain tumour. A purposive sample of 18 participants with mixed tumour types (9 benign and 9 malignant) and 15 family caregivers was recruited from a neurosurgical practice and a brain tumour support service. In-depth semi-structured interviews focused on participants’ perceptions of their adjustment, including personal appraisals, coping and social support since their brain tumour diagnosis. Interview transcripts were analysed thematically using open, axial and selective coding techniques. The primary theme that emerged from the analysis entailed “key sense making appraisals”, which was closely related to the following secondary themes: (1) Interactions with those in the healthcare system, (2) reactions and support from the personal support network, and (3) a diversity of coping efforts. Adjustment to brain tumour involved a series of appraisals about the illness that were influenced by interactions with those in the healthcare system, reactions and support from people in their support network, and personal coping efforts. Overall, the findings indicate that adjustment to brain tumour is highly individualistic; however, some common personal and social processes are evident in how people make sense of and adapt to the illness over time. A preliminary framework of adjustment based on the present findings and its clinical relevance are discussed. In particular, it is important for health professionals to seek to understand and support individuals’ sense-making processes following diagnosis of brain tumour.
Resumo:
This study explored youth caregiving for a parent with multiple sclerosis (MS) from multiple perspectives, and examined associations between caregiving and child negative (behavioural emotional difficulties, somatisation) and positive (life satisfaction, positive affect, prosocial behaviour) adjustment outcomes overtime. A total of 88 families participated; 85 parents with MS, 55 partners and 130 children completed questionnaires at Time 1. Child caregiving was assessed by the Youth Activities of Caregiving Scale (YACS). Child and parent questionnaire data were collected at Time 1 and child data were collected 12 months later (Time 2). Factor analysis of the child and parent YACS data replicated the four factors (instrumental, social-emotional, personal-intimate, domestic-household care), all of which were psychometrically sound. The YACS factors were related to parental illness and caregiving context variables that reflected increased caregiving demands. The Time 1 instrumental and social-emotional care domains were associated with poorer Time 2 adjustment, whereas personal-intimate was related to better adjustment and domestic-household care was unrelated to adjustment. Children and their parents exhibited highest agreement on personal-intimate, instrumental and total caregiving, and least on domestic-household and social-emotional care. Findings delineate the key dimensions of young caregiving in MS and the differential links between caregiving activities and youth adjustment.
Resumo:
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.
Resumo:
Research in structural dynamics has received considerable attention due to problems associated with emerging slender structures, increased vulnerability of structures to random loads and aging infrastructure. This paper briefly describes some such research carried out on i) dynamics of composite floor structure, ii) dynamics of cable supported footbridge, iii) seismic mitigation of frame-shear wall structure using passive dampers and iv) development of a damage assessment model for use in structural health modelling.
Resumo:
Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.
Resumo:
Linking real-time schedulability directly to the Quality of Control (QoC), the ultimate goal of a control system, a hierarchical feedback QoC management framework with the Fixed Priority (FP) and the Earliest-Deadline-First (EDF) policies as plug-ins is proposed in this paper for real-time control systems with multiple control tasks. It uses a task decomposition model for continuous QoC evaluation even in overload conditions, and then employs heuristic rules to adjust the period of each of the control tasks for QoC improvement. If the total requested workload exceeds the desired value, global adaptation of control periods is triggered for workload maintenance. A sufficient stability condition is derived for a class of control systems with delay and period switching of the heuristic rules. Examples are given to demonstrate the proposed approach.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.