998 resultados para SPIN GLASSES (THEORY)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An analytical approach for spin-stabilized spacecraft attitude prediction is presented for the influence of the residual magnetic torques. Assuming an inclined dipole model for the Earth's magnetic field, an analytical averaging method is applied to obtain the mean residual torque every orbital period. The orbit mean anomaly is utilized to compute the average components of residual torque in the spacecraft body frame reference system. The theory is developed for time variations in the orbital elements, and non-circular orbits, giving rise to many curvature integrals. It is observed that the residual magnetic torque does not have component along the spin axis. The inclusion of this torque on the rotational motion differential equations of a spin stabilized spacecraft yields conditions to derive an analytical solution. The solution shows that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spin axis of the spacecraft. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new approach to the description of a spin-2 particle in flat and curved spacetime is developed on the basis of the teleparallel gravity theory. We show that such an approach is in fact a true and natural framework for the Fierz representation proposed recently by Novello and Neves. More specifically, we demonstrate how the teleparallel theory fixes uniquely the structure of the Fierz tensor, discover the transparent origin of the gauge symmetry of the spin-2 model, and derive the linearized Einstein operator from the fundamental identity of the teleparallel gravity. In order to cope with the consistency problem on the curved spacetime, similarly to the usual Riemannian approach, one needs to include the nonminimal (torsion dependent) coupling terms.
Resumo:
In reply to the criticism made by Mielke in the preceding Comment on our recent paper, we once again explicitly demonstrate the inconsistency of the coupling of a Dirac field to gravitation in the teleparallel equivalent of general relativity. Moreover, we stress that the mentioned inconsistency is generic for all sources with spin and is by no means restricted to the Dirac field. In this sense the SL(4,R)-covariant generalization of the spinor fields in the teleparallel gravity theory is irrelevant to the inconsistency problem.
Resumo:
We study the massless Duffin-Kemmer-Petiau (DKP) equation in Riemannian space-times, particularly the massless spin 1 sector which reproduces the free Maxwell's equations.
Resumo:
We investigate the conformal invariance of massless Duffin-Kemmer-Petiau theory coupled to Riemannian spacetimes. We show that, as usual, in the minimal coupling procedure only the spin I sector of the theory - which corresponds to the electromagnetic field - is conformally invariant. We also show that the conformal invariance of the spin 0 sector can be naturally achieved by introducing a compensating term in the Lagrangian. Such a procedure - besides not modifying the spin I sector - leads to the well-known conformal coupling between the scalar curvature and the massless Klein-Gordon-Fock field. Going beyond the Riemannian spacetimes, we briefly discuss the effects of a nonvanishing torsion in the scalar case.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)