919 resultados para SOYBEAN LOOPER
Resumo:
A greenhouse experiment studied the effect of potassium fertilization on soybean (Glycine max L. Merrill) root morphology and on K absorption by six soybean cultivars of different maturation groups and growth habits. The Plants were grown up to 70 days after plant emergence, in pots containing 6.0 kg of soil. In the absence of K, no significant difference in K absorption was observed among the cultivars or in root length and surface, but root mean radius was correlated to K absorption. Differences in K absorption were not associated with root characteristics in the presence of K fertilization. Physiological adjustments in K uptake, as well as K availability in the soil, were more important in soybean nutrition than were morphological adjustments in the root system. The results were not associated with plant growth habit or with maturation group.
Resumo:
The ability of the stink bug (Nezara viridula) to induce and/or increase production of chemical defenses, i.e., flavonoids, in immature seeds of five genotypes of soybean (BR-16, IAC-100, PI 227687, PI 229358, and PI 274454) was investigated under greenhouse and laboratory conditions. Samples from pods of each genotype damaged by stink bug were analyzed for flavonoid content with high performance liquid chromatography. A dual-choice test was conducted to evaluate the feeding preference of N. viridula comparing BR-16 pods treated with extracts of PI 227687 seeds (with and without stink-bug injury), with water-treated pods. Seeds of PI 227687 damaged by N. viridula presented the highest concentration (352 mug/g) of daidzin (4'-hydroxyisoflavone-7-glucoside). The same trend was observed with genistin (4',5,7-trihydroxyisoflavone-7-glucoside): PI 227687 contained 142.4 mug/g, PI 274454, 31.6 mug/g, and PI 229358, 38.9 mug/g. Seeds damaged by stink bugs had higher isoflavone contents (daidzin and genistin), compared to controls. However, after being damaged, PI 274454 and PI 229358 produced less genistin than the other genotypes and no differences in concentration between damaged and nondamaged plants of this genotypes were observed. The numbers of observations of the insect feeding and the numbers of stylet sheaths left in water-treated BR-16 pods were greater than in those treated with PI 227687 extracts. The insects fed for longer periods on BR-16 pods treated with extract of PI 227687 without injury compared to those that were treated with extract of PI 227687 previously injured by stink bugs. Extracts of PI 227687 pods ( damaged or not) were deterrent to adults of N. viridula, and insect injury increased concentrations of daidzin and genistin in PI 227687 seeds. The deterrence seemed to be more pronounced after pods had suffered stink-bug injury.
Resumo:
In this work we applied mercury porosimetry for the investigation of soybean seed coats. By using this method it was possible to determine the pore size distribution and also the pore size dispersion that is present in seed coats. The results showed that for the studied soybean genotype the seed coats had a characteristic pore diameter, but deviation of this size was not negligible. Finally, the results were confirmed by electron microscopy.
Resumo:
Soil compaction has a negative effect and Ca was shown to enhance root growth. The effects of soil subsurface compaction and liming on root growth and nutrient uptake by soybean were studied at the Department of Agriculture and Plant Breeding, São Paulo State University, Brazil. A Dark Red Latosol, sandy loam (Haplortox) was limed to raise base saturations to 40.1, 52.4 and 66.7%. The experimental pots were made of PVC tubes with 100 mm of diameter. Three rings with 150, 35 and 150 mm long were fixed one on the top of the other. In the central ring of 35 mm, the soil was compacted to bulk densities of 1.06, 1.25, 1.43 and 1.71 g.cm(-3). There was no effect of base saturation on soybean root and shoot growth and nutrition. Subsurface compaction led to an increase in root growth in the superficial layer of the pots with a correspondent quadratic decrease in the compacted layer. There was no effect of subsoil compaction on total root length and surface, soybean growth and nutrition. Soybean root growth was decreased by 10% and 50% when the soil penetrometer resistances were 0.52 MPa (bulk density of 1.45 g.cm(-1)) and 1.45 MPa (bulk density of 1.69 g.cm(-3)), respectively. In spite of the poor root growth in the compacted layer, once it nas overcome the root system showed an almost complete recovery.
Resumo:
This trial was carried out under laboratory conditions, with three lots of Iguacu soybean seeds, to determine the respiration rate by the titulation method. A randomized complete block design was used, with four repetitions, each one of them with 50 seeds and a control without seeds for each lot. The seeds were placed in gerbox with 40 mi of KOH 0.1N, on distilled water wet blotting paper for fixing the CO2 produced by seeds respiration. The material was placed in germinator at constant 25 degrees C for 16, 24 and 48 hours. After these periods, the titulation of the fixative solution was performed with HCl 0.1N to check the respiration rate. The most deteriorated seeds were those that presented the highest respiration rates, which were measured in mg of CO2/g of dry matter, when compared with the most vigorous lots. The titulation method was suitable for the evaluation of soybean seed respiration rate because the final results separated the lots in three different quality levels that were compatible with the results obtained from the accelerated aging and emergence.
Resumo:
In this work we apply the mercury porosimetry technique to determine the pore size distribution in soybean seed coats of different varieties. The analyses show that the porosity of soybean seed coats is different when seeds of different genotypes are compared. This result points the possibility of using pore size distribution to varietal discrimination.
Resumo:
Although drought and defoliation stress have been shown to reduce soybean [Glycine max (L.). Merr.] yield, little information has been published regarding their effects on soybean seed quality. Field experiments were conducted in 1986, 1987, and 1989 to evaluate the effect of drought and defoliation (1989 only) stress during soybean seed development on seed germination and vigor. Essex (MG [maturity group] V) and Union (MG III) were grown in 1986 and 1987, and Harper (MG III) and McCall (MG 00) in 1989. Moisture treatments were either well watered or drought stressed during seed development (R5 to R7). In 1989, a total defoliation treatment was also imposed at R6 as an additional stress factor. There were significant reductions in yield and yield components following drought stress in all 3 yr and following defoliation in 1989. Leaf conductance and transpiration also decreased in the drought stress treatments. There was no effect of drought stress on seed germination or seed vigor as measured by accelerated aging germination and the cold test across the four cultivars (determinate and indeterminate) and 3 yr. In 1989 slight changes in 3-d germination and conductivity occurred for some drought stress treatments. Most of this response, however, was related to increased occurrence of hard seed, which does not represent an indication of a change in vigor. Seed germination and vigor were significantly reduced for small, flat, shriveled, and underdeveloped seeds that only occurred following defoliation. These seeds represented a small portion of the seed lot that would normally be removed during conditioning. The data suggest that drought stress would have no effect on seed germination or vigor, unless the stress was severe enough to produce shriveled, flat, underdeveloped seeds.
Resumo:
The effects of soybean genotype and seed coat lignin content on bulk electrical conductivity were investigated. Seeds of nine soybean cultivars were hand harvested at R8 maturation stage in Londrina, PR., Brazil in 1995/96. Seeds were electrical conductivity tested using four replicates of 50 seeds per cultivar soaked in 75 mi of deionized water at 25 degrees C for 24 hours. Seed coat lignin content was determined using the potassium permanganate method. There was a significant relationship (R-2 = 0.84**) between electrical conductivity and seed coat lignin content, the latter being a characteristic that varies among soybean genotypes; the higher the amount of lignin in the seed coat, the lower the levels of seed exudates to the soaking solution and consequently the lower the electrical conductivity. It was concluded that seed soaking electrical conductivity is influenced by the seed coat lignin content, which is a characteristic that varies among soybean genotypes. Additionally, the EC test can be used as a valuable tool in the screening process for this characteristic, which is desirable for genetically improving soybean seed quality.
Resumo:
Asian soybean rust is a formidable threat to soybean (Glycine max) production in many areas of the world, including the United States. Only five sources of resistance have been identified (Resistance to Phakopsora pachyrhizi1 [Rpp1], Rpp2, Rpp3, Rpp4, and Rpp5). Rpp4 was previously identified in the resistant genotype PI459025B and mapped within 2 centimorgans of Satt288 on soybean chromosome 18 (linkage group G). Using simple sequence repeat markers, we developed a bacterial artificial chromosome contig for the Rpp4 locus in the susceptible cv Williams82 (Wm82). Sequencing within this region identified three Rpp4 candidate disease resistance genes (Rpp4C1-Rpp4C3 [Wm82]) with greatest similarity to the lettuce (Lactuca sativa) RGC2 family of coiled coil-nucleotide binding site-leucine rich repeat disease resistance genes. Constructs containing regions of the Wm82 Rpp4 candidate genes were used for virus-induced gene silencing experiments to silence resistance in PI459025B, confirming that orthologous genes confer resistance. Using primers developed from conserved sequences in the Wm82 Rpp4 candidate genes, we identified five Rpp4 candidate genes (Rpp4C1-Rpp4C5 [PI459025B]) from the resistant genotype. Additional markers developed from the Wm82 Rpp4 bacterial artificial chromosome contig further defined the region containing Rpp4 and eliminated Rpp4C1 (PI459025B) and Rpp4C3 (PI459025B) as candidate genes. Sequencing of reverse transcription-polymerase chain reaction products revealed that Rpp4C4 (PI459025B) was highly expressed in the resistant genotype, while expression of the other candidate genes was nearly undetectable. These data support Rpp4C4 (PI459025B) as the single candidate gene for Rpp4-mediated resistance to Asian soybean rust.
Resumo:
Asian soybean rust (ASR) is caused by the fungal pathogen Phakopsora pachyrhizi Sydow & Sydow. It was first identified in Brazil in 2001 and quickly infected soybean areas in several countries in South America. Primary efforts to combat this disease must involve the development of resistant cultivars. Four distinct genes that confer resistance against ASR have been reported: Rpp1, Rpp2, Rpp3, and Rpp4. However, no cultivar carrying any of those resistance loci has been released. The main objective of this study was to genetically map Rpp2 and Rpp4 resistance genes. Two F(2:3) populations, derived from the crosses between the resistant lines PI 230970 (Rpp2), PI 459025 (Rpp4) and the susceptible cultivar BRS 184, were used in this study. The mapping populations and parental lines were inoculated with a field isolate of P. pachyrhizi and evaluated for lesion type as resistant (RB lesions) or susceptible (TAN lesions). The mapping populations were screened with SSR markers, using the bulk segregant analysis (BSA) to expedite the identification of linked markers. Both resistance genes showed an expected segregation ratio for a dominant trait. This study allowed mapping Rpp2 and Rpp4 loci on the linkage groups J and G, respectively. The associated markers will be of great value on marker assisted selection for this trait.