969 resultados para SOIL ORGANIC-MATTER
Resumo:
IEECAS SKLLQG
Resumo:
To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (K-OC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (K-OW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for K-OC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (k(soil)) and K-OC measured by batch equilibrium method were studied. Good correlations were achieved between k(soil) and K-OC for three types of soils with different properties. All the square of the correlation coefficients (R-2) of the linear regression between log k(soi) and log K-OC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of K-OC from K-OW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (k(CN)) was comparatively evaluated for the three types of soils. The results show that the prediction of K-OC from k(CN) and K-OW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the K-OC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict K-OC largely depends on the properties of soil concerned. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. The most widely used method of POP destruction is incineration, which is expensive and could result in undesirable by-products. An alternative bioremediation technology, which is cheaper and environ-mentally friendly, was tested during this experiment. Two different soil types containing high and low organic matter (OM) were spiked with 100 mg/kg each of pyrene and Aroclor 1248 and planted with three different species of grasses. The objective of the study was to determine residue recovery levels (availability) and potential effectiveness of these plant species for the remediation of POPs. The results showed that recovery levels were highly dependent on the soil organic matter content—very low in all treatments with the high OM content soil compared to recoveries in the low OM soil. This indicates that availability, and, hence, biodegradability of the contaminants is dependent on the organic matter content of the soil. Moreover, the degree of availability was also significantly different for the two classes of chemicals. The polyaromatic hydrocarbon (PAH) recovery (availability) was extremely low in the high organic matter content soil compared to that of the polychlorinated biphenyls (PCBs). In both soil types, all of the plant species treatments showed significantly greater PCB biodegradation compared to the unplanted controls. Planting did not have any significant effect on the transformation of the PAHs in both soil types; however, planting with switchgrass was the best remedial option for both soil types contaminated with PCB.
Resumo:
Temporal trends in total ozone for the St. Lawrence estuary were estimated from ground-based measurements at the NOAA/CMDL station in Caribou, Maine. Linear regression analysis showed that from 1979 to 1999 total ozone has decreased by about 3.3% per decade on an annual basis and ≤6.2% per decade on a monthly basis relative to unperturbed (pre-CFC) levels. The influence of increased ultraviolet-B (280–320 nm) radiation associated with ozone depletion on water column photochemical processes was evaluated by modeling the photobleaching of chromophoric dissolved organic material (CDOM). Linear regression analysis showed small (<0.5% per decade), but statistically significant upward trends in maximum noontime photobleaching rates. Most notably, positive trends in relative rates for May, June, and July, when maximum absolute rates are expected, were predicted. A global model based on TOMS ozone data revealed increases in photobleaching of ≤3% per decade at high latitudes in the Southern Hemisphere. Radiation amplification factors for increases in photochemically weighted UV (280–400 nm) in response to ozone depletion were estimated at 0.1 and 0.08 for photobleaching of CDOM absorbance at 300 and 350 nm, respectively. Application of the laboratory-based model to conditions that more closely resembled those in situ were variable with both overestimation and underestimation of measured rates. The differences between modeled rates and observed rates under quasi-natural conditions were as large or larger than the predicted increases due to ozone depletion. These comparisons suggest that biological activity and mixing play an important, but as yet ill-defined, role in modifying photochemical processes.
Resumo:
National Natural Science Foundation of China [30590381]; Knowledge Innovation Program of the Chinese Academy of Sciences [KZCX2YW-432]; International Partnership Project