976 resultados para SIO2
Resumo:
采用射频磁控溅射技术和热退火处理制备了纳米Si镶嵌SiO2薄膜,在室温下观察到光致发光现象,峰值分别位于360,430和835nm,结合吸收谱、光致发光激发谱和X射线衍射分析讨论了发光机理.利用纳米Si镶嵌SiO2薄膜的非线性光学特性可作为可饱和吸收体,在Nd
Resumo:
This paper presents the development of LPCVD growth of 3C-SiC thin films grown on Si mesas and thermally oxidized SiO2 masks over Si with an area of 150 × 100μm^2 and SiO2/Si substrates. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H2. 3C-SiC films on these substrates were characterized by optical microscopy, X-ray diffraction ( XRD ), X-ray photoelectron spectroscopy ( XPS ), scanning electron microscopy (SEM) and room temperature Hall effect measurements. It is shown that there were no voids at the interface between 3C-SiC and SiO2.
Resumo:
叙述了一个完整的16通道硅基二氧化硅阵列波导光栅(AWG)的设计、制备及测试过程。通道间隔为0.8nm(100GHz),解复用器的插入损耗为16.8dB,其中材料损耗为11.95dB,相邻通道串扰小于一17dB,通道插损非均匀性小于2.2dB。
Resumo:
采用有限元法对SiO2/Si掩埋光波导制备工艺中的应力变化进行了系统的分析,在此基础上,应用有限差分束传播法(FDBPM)对应力光波导的双折射进行了计算.结果表明上包层的玻璃化过程是SiO2/Si波导形成水平方向和垂直方向应力差的主要原因,相应的应力双折射系数B在10-4量级.进一步的分析表明上包层B,P重掺杂可明显减小波导的双折射系数.
Resumo:
为了进一步减小栅漏电,提高击穿电压,将MOS结构的优点引入ALGaN/GaN HEMT器件中,研制并分析了新型的基于AlGaN/GaN的 MOS-HFET结构.采用等离子增强气相化学沉积(PECVD)的方法生长了50 nm的SiO2作为栅绝缘层,新型的AlGaN/GaN MOS-HFET器件栅长1 μm,栅宽80 μm,测得最大饱和输出电流为784 mA/mm,最大跨导为44.25 ms/mm,最高栅偏压+6 V.
Resumo:
使用MBE方法在Si(111)衬底和Si-SiO2-Si柔性衬底上生长了GaN外延层,并对在两种衬底上生长的样品进行了对比分析.在柔性衬底上获得了无裂纹的外延层,其表面粗糙度为0.6nm.研究了GaN外延层中的应力及其光学性质,光致发光测试结果表明柔性衬底上生长的外延层中应力和杂质浓度明显低于直接生长在Si衬底上的样品的值.研究结果显示了所用柔性衬底有助于改善GaN外延膜的质量.
Resumo:
用火焰水解法在单晶Si片上沉积了掺Ge的SiO2(GeO2-SiO2)粉末,随后在高温炉中将此粉末烧结成玻璃.用光学显微镜观察了样品表面形貌,研究了不同的烧结工艺对样品形貌的影响.用X射线光电子能谱检测了样品的元素组成,并用棱镜耦合法测量了样品的折射率和厚度.结果表明,用适宜的工艺条件制备出的掺Ge的SiO2具有表面平整光滑,折射率和厚度可调等优点,适合用作Si基SiO2波导器件的芯层.
Resumo:
Effects of SiO2, encapsulation and rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs single quantum well (SQW) were studied by low temperature photoluminescence (PL). A blueshift of the PL peak energy for both the SiO2-capped region and the bare region was observed. The results were attributed to the nitrogen reorganization in the GaNAs/GaAs SQW. It was also shown that the nitrogen reorganization was obviously enhanced by SiO2 cap-layer. A simple model [1] was used to describe the SiO2-enhanced blueshift of the low temperature PL peak energy.
Resumo:
In this study, silicon nanocrystals embedded in SiO2 matrix were formed by conventional plasma enhanced chemical vapor deposition (PECVD) followed by high temperature annealing. The formation of silicon nanocrystals (nc-Si), their optical and micro-structural properties were studied using various experimental techniques, including Fourier transform infrared spectroscopy, micro-Raman spectra, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy. Very strong red light emission from silicon nanocrystals at room temperature (RT) was observed. It was found that there is a strong correlation between the PL intensity and the substrate temperature, the oxygen content and the annealing temperature. When the substrate temperature decreases from 250degreesC to RT, the PL intensity increases by two orders of magnitude.
Resumo:
The deposition rate and refractive index for a-Si(amorphous silicon) and SiO2 grown by PECVD were studied under different pressure, power and proportion of reactant source gases. a-Si/SiO2 MQW(multi-quantum well) with high quality was deposited under suitable conditions, in which the thickness of the a-Si layers is several nanometers. The sample of a-Si/SiO2 MQW was crystallized by laser annealing. Because of the confinement of the SiO2 layers, crystalline grains were formed during the a-Si layers were being crystallized. The size of the crystalline grains were not more than the thickness of the a-Si layers. The a-Si layers were crystallized to be nanometer crystalline silicon(nc-Si), therefore, nc-Si/SiO2 MQW was formed. For the a-Si/SiO2 MQW with 4.0nm a-Si wells separated by 5nm SiO2 barries, most of the a-Si were crystallized to silicon grains after laser annealing,and the size of the grains is 3.8nm. Strong photoluminescence with three peaks from the nc-Si/SiO2 MQW was detected at 10K. The wavelength of the peaks were 810nm, 825nm and 845nm, respectively.
Resumo:
The plasmon resonance absorption of the Ag/SiO2 nanocomposite film is investigated. The measured absorption spectra are compared with those calculated by the Mie theory. The results indicate that the Mie theory on the basis of classical electrodynamics can only partially explain the optical absorption spectra of the Ag/SiO2 nanocomposite film. We believe that the plasmon resonance absorption is mainly an intrinsic quality of the metal particle, and can be explained only with the electronic structure of the metal particle. In the latter, surface resonance state is introduced to systematically discuss the optical absorption spectra of the Ag/SiO2 nanocomposite film. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The origin of the flat band voltage roll-off (V-FB roll-off) in metal gate/high-k/ultrathin-SiO2/Si metal-oxide-semiconductor stacks is analyzed and a model describing the role of the dipoles at the SiO2/Si interface on the V-FB sharp roll-off is proposed. The V-FB sharp roll-off appears when the thickness of the SiO2 interlayer diminishes to below the oxygen diffusion depth. The results derived using our model agree well with experimental data and provide insights to the mechanism of the V-FB sharp roll-off.