969 resultados para SEMANTICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them being used for information systems development. In this paper, we examine two factors that we predict will influence the understanding of a business process that novice developers obtain from a corresponding process model: the content presentation form chosen to articulate the business domain, and the user characteristics of the novice developers working with the model. Our experimental study provides evidence that novice developers obtain similar levels of understanding when confronted with an unfamiliar or a familiar process model. However, previous modeling experience, the use of English as a second language, and previous work experience in BPM are important influencing factors of model understanding. Our findings suggest that education and research in process modeling should increase the focus on human factors and how they relate to content and content presentation formats for different modeling tasks. We discuss implications for practice and research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software transactional memory has the potential to greatly simplify development of concurrent software, by supporting safe composition of concurrent shared-state abstractions. However, STM semantics are defined in terms of low-level reads and writes on individual memory locations, so implementations are unable to take advantage of the properties of user-defined abstractions. Consequently, the performance of transactions over some structures can be disappointing. ----- ----- We present Modular Transactional Memory, our framework which allows programmers to extend STM with concurrency control algorithms tailored to the data structures they use in concurrent programs. We describe our implementation in Concurrent Haskell, and two example structures: a finite map which allows concurrent transactions to operate on disjoint sets of keys, and a non-deterministic channel which supports concurrent sources and sinks. ----- ----- Our approach is based on previous work by others on boosted and open-nested transactions, with one significant development: transactions are given types which denote the concurrency control algorithms they employ. Typed transactions offer a higher level of assurance for programmers reusing transactional code, and allow more flexible abstract concurrency control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petri nets are often used to model and analyze workflows. Many workflow languages have been mapped onto Petri nets in order to provide formal semantics or to verify correctness properties. Typically, the so-called Workflow nets are used to model and analyze workflows and variants of the classical soundness property are used as a correctness notion. Since many workflow languages have cancelation features, a mapping to workflow nets is not always possible. Therefore, it is interesting to consider workflow nets with reset arcs. Unfortunately, soundness is undecidable for workflow nets with reset arcs. In this paper, we provide a proof and insights into the theoretical limits of workflow verification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional workflow systems focus on providing support for the control-flow perspective of a business process, with other aspects such as data management and work distribution receiving markedly less attention. A guide to desirable workflow characteristics is provided by the well-known workflow patterns which are derived from a comprehensive survey of contemporary tools and modelling formalisms. In this paper we describe the approach taken to designing the newYAWL workflow system, an offering that aims to provide comprehensive support for the control-flow, data and resource perspectives based on the workflow patterns. The semantics of the newYAWL workflow language are based on Coloured Petri Nets thus facilitating the direct enactment and analysis of processes described in terms of newYAWL language constructs. As part of this discussion, we explain how the operational semantics for each of the language elements are embodied in the newYAWL system and indicate the facilities required to support them in an operational environment. We also review the experiences associated with developing a complete operational design for an offering of this scale using formal techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the emergence of multi-core processors into the mainstream, parallel programming is no longer the specialized domain it once was. There is a growing need for systems to allow programmers to more easily reason about data dependencies and inherent parallelism in general purpose programs. Many of these programs are written in popular imperative programming languages like Java and C]. In this thesis I present a system for reasoning about side-effects of evaluation in an abstract and composable manner that is suitable for use by both programmers and automated tools such as compilers. The goal of developing such a system is to both facilitate the automatic exploitation of the inherent parallelism present in imperative programs and to allow programmers to reason about dependencies which may be limiting the parallelism available for exploitation in their applications. Previous work on languages and type systems for parallel computing has tended to focus on providing the programmer with tools to facilitate the manual parallelization of programs; programmers must decide when and where it is safe to employ parallelism without the assistance of the compiler or other automated tools. None of the existing systems combine abstraction and composition with parallelization and correctness checking to produce a framework which helps both programmers and automated tools to reason about inherent parallelism. In this work I present a system for abstractly reasoning about side-effects and data dependencies in modern, imperative, object-oriented languages using a type and effect system based on ideas from Ownership Types. I have developed sufficient conditions for the safe, automated detection and exploitation of a number task, data and loop parallelism patterns in terms of ownership relationships. To validate my work, I have applied my ideas to the C] version 3.0 language to produce a language extension called Zal. I have implemented a compiler for the Zal language as an extension of the GPC] research compiler as a proof of concept of my system. I have used it to parallelize a number of real-world applications to demonstrate the feasibility of my proposed approach. In addition to this empirical validation, I present an argument for the correctness of the type system and language semantics I have proposed as well as sketches of proofs for the correctness of the sufficient conditions for parallelization proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging and represent those in a form of ontology, but the application of the learned ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging into some form of ontology, but the application of the resulted ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the emergence of Web 2.0, Web users can classify Web items of their interest by using tags. Tags reflect users’ understanding to the items collected in each tag. Exploring user tagging behavior provides a promising way to understand users’ information needs. However, free and relatively uncontrolled vocabulary has its drawback in terms of lack of standardization and semantic ambiguity. Moreover, the relationships among tags have not been explored even there exist rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach to construct tag ontology based on the widely used general ontology WordNet to capture the semantics and the structural relationships of tags. Ambiguity of tags is a challenging problem to deal with in order to construct high quality tag ontology. We propose strategies to find the semantic meanings of tags and a strategy to disambiguate the semantics of tags based on the opinion of WordNet lexicographers. In order to evaluate the usefulness of the constructed tag ontology, in this paper we apply the extracted tag ontology in a tag recommendation experiment. We believe this is the first application of tag ontology for recommendation making. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing importance and need of data processing for information extraction is vital for Web databases. Due to the sheer size and volume of databases, retrieval of relevant information as needed by users has become a cumbersome process. Information seekers are faced by information overloading - too many result sets are returned for their queries. Moreover, too few or no results are returned if a specific query is asked. This paper proposes a ranking algorithm that gives higher preference to a user’s current search and also utilizes profile information in order to obtain the relevant results for a user’s query.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embedded real-time programs rely on external interrupts to respond to events in their physical environment in a timely fashion. Formal program verification theories, such as the refinement calculus, are intended for development of sequential, block-structured code and do not allow for asynchronous control constructs such as interrupt service routines. In this article we extend the refinement calculus to support formal development of interrupt-dependent programs. To do this we: use a timed semantics, to support reasoning about the occurrence of interrupts within bounded time intervals; introduce a restricted form of concurrency, to model composition of interrupt service routines with the main program they may preempt; introduce a semantics for shared variables, to model contention for variables accessed by both interrupt service routines and the main program; and use real-time scheduling theory to discharge timing requirements on interruptible program code.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technologies and languages for integrated processes are a relatively recent innovation. Over that period many divergent waves of innovation have transformed process integration. Like sockets and distributed objects, early workflow systems ordered programming interfaces that connected the process modelling layer to any middleware. BPM systems emerged later, connecting the modelling world to middleware through components. While BPM systems increased ease of use (modelling convenience), long-standing and complex interactions involving many process instances remained di±cult to model. Enterprise Service Buses (ESBs), followed, connecting process models to heterogeneous forms of middleware. ESBs, however, generally forced modellers to choose a particular underlying middleware and to stick to it, despite their ability to connect with many forms of middleware. Furthermore ESBs encourage process integrations to be modelled on their own, logically separate from the process model. This can lead to the inability to reason about long standing conversations at the process layer. Technologies and languages for process integration generally lack formality. This has led to arbitrariness in the underlying language building blocks. Conceptual holes exist in a range of technologies and languages for process integration and this can lead to customer dissatisfaction and failure to bring integration projects to reach their potential. Standards for process integration share similar fundamental flaws to languages and technologies. Standards are also in direct competition with other standards causing a lack of clarity. Thus the area of greatest risk in a BPM project remains process integration, despite major advancements in the technology base. This research examines some fundamental aspects of communication middleware and how these fundamental building blocks of integration can be brought to the process modelling layer in a technology agnostic manner. This way process modelling can be conceptually complete without becoming stuck in a particular middleware technology. Coloured Petri nets are used to define a formal semantics for the fundamental aspects of communication middleware. They provide the means to define and model the dynamic aspects of various integration middleware. Process integration patterns are used as a tool to codify common problems to be solved. Object Role Modelling is a formal modelling technique that was used to define the syntax of a proposed process integration language. This thesis provides several contributions to the field of process integration. It proposes a framework defining the key notions of integration middleware. This framework provides a conceptual foundation upon which a process integration language could be built. The thesis defines an architecture that allows various forms of middleware to be aggregated and reasoned about at the process layer. This thesis provides a comprehensive set of process integration patterns. These constitute a benchmark for the kinds of problems a process integration language must support. The thesis proposes a process integration modelling language and a partial implementation that is able to enact the language. A process integration pilot project in a German hospital is brie°y described at the end of the thesis. The pilot is based on ideas in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few years we have observed a proliferation of approaches for clustering XML docu- ments and schemas based on their structure and content. The presence of such a huge amount of approaches is due to the different applications requiring the XML data to be clustered. These applications need data in the form of similar contents, tags, paths, structures and semantics. In this paper, we first outline the application contexts in which clustering is useful, then we survey approaches so far proposed relying on the abstract representation of data (instances or schema), on the identified similarity measure, and on the clustering algorithm. This presentation leads to draw a taxonomy in which the current approaches can be classified and compared. We aim at introducing an integrated view that is useful when comparing XML data clustering approaches, when developing a new clustering algorithm, and when implementing an XML clustering compo- nent. Finally, the paper moves into the description of future trends and research issues that still need to be faced.