999 resultados para Roll motion
Resumo:
Be/X-ray binary pulsars have wide eccentric orbits and hence the angle of periastron of the orbit is very well defined in these sources. The presence of an X-ray pulsar allows for accurate measurements of orbital elements. A Be star usually is a rapidly rotating star and hence will deviate from spherical geometry. The tidal interaction between the neutron star and the Be star will add to the distortion of the Be star and alter its mass distribution. Thus a measurable rate of apsidal motion is expected from these systems. In this paper, we present the first conclusive detection of apsidal motion of the binary 4U 0115+63. We also present new and accurate orbital parameters of the Be/X-ray binaries V0332+53 and 2S 1417-624.
Resumo:
Chlorine has been substituted at the 2- and 4-positions in the pyridine and quinoline rings of the corresponding N-oxides and 35Cl n.q.r. spectra have been studied in the temperature range 77–300 K. The change in the n.q.r. frequencies in N-oxides as compared to their parent compounds are interpreted in terms of the conjugative effect and the inductive effect of the N+—O– group. The negative temperature coefficients of the resonance frequencies in chloropyridine-N-oxides have been analysed using the Bayer, Kushida and Brown equations. The calculated torsional frequencies, which are in the range 52–78 cm–1, are found to be only slightly temperature dependent.
Resumo:
Calculations in a hydrodynamic model of quasicrystal dynamics show that dislocation motion in these systems is impeded by a drag far greater than that in crystals.
Resumo:
We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concommitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature.
Resumo:
An exact solution to the problem of time-dependent motion of a viscous fluid in an annulus with porous walls is obtained under the assumption that the rate of suction at one wall is equal to the rate of injection at the other. Finite Hankel transform is used to obtain a closed-form solution for the axial velocity. The average axial velocity profiles are depicted graphically.
Resumo:
We study the Segal-Bargmann transform on a motion group R-n v K, where K is a compact subgroup of SO(n) A characterization of the Poisson integrals associated to the Laplacian on R-n x K is given We also establish a Paley-Wiener type theorem using complexified representations
Resumo:
Seepage through sand bed channels in a downward direction (suction) reduces the stability of particles and initiates the sand movement. Incipient motion of sand bed channel with seepage cannot be designed by using the conventional approach. Metamodeling techniques, which employ a non-linear pattern analysis between input and output parameters and solely based on the experimental observations, can be used to model such phenomena. Traditional approach to find non-dimensional parameters has not been used in the present work. Parameters, which can influence the incipient motion with seepage, have been identified and non-dimensionalized in the present work. Non-dimensional stream power concept has been used to describe the process. By using these non-dimensional parameters; present work describes a radial basis function (RBF) metamodel for prediction of incipient motion condition affected by seepage. The coefficient of determination, R-2 of the model is 0.99. Thus, it can be said that model predicts the phenomena very well. With the help of the metamodel, design curves have been presented for designing the sand bed channel when it is affected by seepage. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In β-AgI and β-Ag3SI the ionic conductivity has been measured at frequencies from 1kHz to 2.6 GHz and from 10 MHz to 10 THz, respectively. In both phases we observe a conductivity increase of some orders of magnitude, due to localized types of motion of the silver ions. In β-AgI the increase is found at about 1 MHz and reflects cooperative back-and-forth hopping processes between adjacent tetrahedral sites. In β-Ag3SI the phenomenon occurs at microwave frequencies. Here it is caused by a non-hopping, non-periodic localized Ag+-motion within shallow potentials.