857 resultados para Robotic dispensing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents an interactive Java software platform which enables any user to easily create advanced virtual laboratories (VLs) for Robotics. This novel tool provides both support for developing applications with full 3D interactive graphical interface and a complete functional framework for modelling and simulation of arbitrary serial-link manipulators. In addition, its software architecture contains a high number of functionalities included as high-level tools, with the advantage of allowing any user to easily develop complex interactive robotic simulations with a minimum of programming. In order to show the features of the platform, the article describes, step-by-step, the implementation methodology of a complete VL for Robotics education using the presented approach. Finally, some educational results about the experience of implementing this approach are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N2), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During grasping and intelligent robotic manipulation tasks, the camera position relative to the scene changes dramatically because the robot is moving to adapt its path and correctly grasp objects. This is because the camera is mounted at the robot effector. For this reason, in this type of environment, a visual recognition system must be implemented to recognize and “automatically and autonomously” obtain the positions of objects in the scene. Furthermore, in industrial environments, all objects that are manipulated by robots are made of the same material and cannot be differentiated by features such as texture or color. In this work, first, a study and analysis of 3D recognition descriptors has been completed for application in these environments. Second, a visual recognition system designed from specific distributed client-server architecture has been proposed to be applied in the recognition process of industrial objects without these appearance features. Our system has been implemented to overcome problems of recognition when the objects can only be recognized by geometric shape and the simplicity of shapes could create ambiguity. Finally, some real tests are performed and illustrated to verify the satisfactory performance of the proposed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design, tuning, and extensive field testing of an admittance-based Autonomous Loading Controller (ALC) for robotic excavation. Several iterations of the ALC were tuned and tested in fragmented rock piles—similar to those found in operating mines—by using both a robotic 1-tonne capacity Kubota R520S diesel-hydraulic surface loader and a 14-tonne capacity Atlas Copco ST14 underground load-haul-dump (LHD) machine. On the R520S loader, the ALC increased payload by 18 % with greater consistency, although with more energy expended and longer dig times when compared with digging at maximum actuator velocity. On the ST14 LHD, the ALC took 61 % less time to load 39 % more payload when compared to a single manual operator. The manual operator made 28 dig attempts by using three different digging strategies, and had one failed dig. The tuned ALC made 26 dig attempts at 10 and 11 MN target force levels. All 10 11 MN digs succeeded while 6 of the 16 10 MN digs failed. The results presented in this paper suggest that the admittance-based ALC is more productive and consistent than manual operators, but that care should be taken when detecting entry into the muck pile

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An industrial manipulator equipped with an automatic clay extruder is used to realize a machine that can manufacture additively clay objects. The desired geometries are designed by means of a 3D modeling software and then sliced in a sequence of layers with the same thickness of the extruded clay section. The profiles of each layer are transformed in trajectories for the extruder and therefore for the end-effector of the manipulator. The goal of this thesis is to improve the algorithm for the inverse kinematic resolution and the integration of the routine within the development software that controls the machine (Rhino/Grasshopper). The kinematic model is described by homogeneous transformations, adopting the Denavit-Hartenberg standard convention. The function is implemented in C# and it has been preliminarily tested in Matlab. The outcome of this work is a substantial reduction of the computation time relative to the execution of the algorithm, which is halved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In clause is given robotic a complex for drilling and milling sandwich shells from polymeric composites. The machining of polymeric composite materials has technological problems. At drilling sandwich shells there is a probability of destruction of a drill from hit of the tool in a partition. The system sensibilization robotic complex for increase of reliability of work of the cutting tool of the small size is offered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"June 1970."