940 resultados para Robot Operation System (ROS)
Resumo:
FAPESP:97/5550
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^
Resumo:
In this paper, the IEEE 14 bus test system is used in order to perform adequacy assessment of a transmission system when large scale integration of electric vehicles is considered at distribution levels. In this framework, the symmetric/constr ained fuzzy power flow (SFPF/CFPF) was proposed. The SFPF/CFPF models are suitable to quantify the adequacy of transmission network to satisfy “reasonable demands for the transmission of electricity” as defined, for instance, in the European Directive 2009/72/EC. In this framework, electric vehicles of different types will be treated as fuzzy loads configuring part of the “reasonable demands”. With this study, it is also intended to show how to evaluate the amount of EVs that can be safely accommodated to the grid meeting a certain adequacy level.
Resumo:
Industrial robots are an inalienable part of modern automated production. Typical applications of robots include welding, painting, (dis)assembly, packaging, labeling, palletizing, pick and place and others. Many of that applications includes object manipulation. If the shape and position of the object are known in advance, it is possible to design the trajectory of the robot’s end-effector to take and place. Such a strategy is applicable for rigid objects and widely used in the manufacturing field. But flexible (deformable) objects can change their shape and position upon contact with the robot’s end-effector or environment. That is the reason why the general approach is unacceptable. It means that the robot can fail to grasp such an object and can’t place it in the desired position. This thesis has addressed the problem of cable manipulation by bilateral robotic setup for the industrial manufacturing of electrical switchgear. The considered solution is based on the idea of tensioned cable. If the cable was grasped by the ends and tensioned, it has a line shape. Since the position of the robot’s end-effectors known, the position of the cable is known as well. Such an approach is capable to place cable in cable ducts of switchgear. The considered solution has been tested experimentally on a real bilateral robotic setup.
Resumo:
This thesis investigates if emotional states of users interacting with a virtual robot can be recognized reliably and if specific interaction strategy can change the users’ emotional state and affect users’ risk decision. For this investigation, the OpenFace [1] emotion recognition model was intended to be integrated into the Flobi [2] system, to allow the agent to be aware of the current emotional state of the user and to react appropriately. There was an open source ROS [3] bridge available online to integrate OpenFace to the Flobi simulation but it was not consistent with some other projects in Flobi distribution. Then due to technical reasons DeepFace was selected. In a human-agent interaction, the system is compared to a system without using emotion recognition. Evaluation could happen at different levels: evaluation of emotion recognition model, evaluation of the interaction strategy, and evaluation of effect of interaction on user decision. The results showed that the happy emotion induction was 58% and fear emotion induction 77% successful. Risk decision results show that: in happy induction after interaction 16.6% of participants switched to a lower risk decision and 75% of them did not change their decision and the remaining switched to a higher risk decision. In fear inducted participants 33.3% decreased risk 66.6 % did not change their decision The emotion recognition accuracy was and had bias to. The sensitivity and specificity is calculated for each emotion class. The emotion recognition model classifies happy emotions as neutral in most of the time.
Resumo:
L’elaborato di tesi discute del progetto di integrazione tra ROS 2, framework open-source per lo sviluppo di applicazioni robotiche, e VxWorks, sistema operativo in tempo reale (RTOS), attraverso l’utilizzo di container OCI compliant su VxWorks. L’integrazione è stata svolta all’interno dello stack software di IMA (Industria Macchine Automatiche). Il progetto ha dunque integrato ROS 2 Humble e VxWorks 7 permettendo l’utilizzo di costrutti software di ROS 2 su dei container in esecuzione a livello User su VxWorks. Successivamente è stata creata una applicazione di pick and place con un robot antropomorfo (Universal Robots Ur5e) avvalendosi di ROS 2 Control, framework per l’introduzione e gestione di hardware e controllori, e MoveIt 2, framework per incorporare algoritmi di motion-planning, cinematica, controllo e navigazione. Una volta progettata l’applicazione, il sistema è stato integrato all’interno dell’architettura di controllo di IMA. L’architettura a container VxWorks di IMA è stata estesa per il caso ROS 2, la comunicazione tra campo e applicazione ROS 2 è passata tramite il master EtherCAT e il modulo WebServer presenti nell’architettura IMA. Una volta eseguito il container ROS 2 posizione e velocità dei servo motori sono stati inviati tramite al WebServer di IMA sfruttando la comunicazione VLAN interna. Una volta ricevuto il messaggio, il WebServer si è occupato di trasferirlo al master EtherCAT che in aggiunta si è occupato anche di ottenere le informazioni sullo stato attuale del robot. L’intero progetto è stato sviluppato in prima battuta in ambiente di simulazione per validarne l’architettura. Successivamente si è passati all’installazione in ambiente embedded grazie all’ausilio di IPC sui quali è stato testato l’effettivo funzionamento dell’integrazione all’interno dell’architettura IMA.
Resumo:
The exploitation of aqueous biphasic extraction is proposed for the first time in flow analysis This extraction strategy stands out for being environmentally attractive since it is based in the utilization of two immiscible phases that are intrinsically aqueous The organic solvents of the traditional liquid-liquid extractions ale no longer used, being replaced by non-toxic, non-flammable and non-volatile ones. A single interface flow analysis (SIFA) system was implemented to carry out the extraction process due to its favourable operational characteristics that include the high automation level and simplicity of operation, the establishment of a dynamic interface where the mass transfer occurred between the two immiscible aqueous phases, and the versatile control over the extraction process namely the extraction time The application selected to demonstrate the feasibility of SIFA to perform this aqueous biphasic extraction was the pre-concentration of lead. After extraction, lead reacted with 8-hydroxyquinoline-5-sulfonic acid and the resulting product was determined by a fluorimetric detector included in the flow manifold. Therefore, the SIFA single interface was used both as extraction (enrichment) and reaction interface. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
A fully automated methodology was developed for the determination of the thyroid hormones levothyroxine (T4) and liothyronine (T3). The proposed method exploits the formation of highly coloured charge-transfer (CT) complexes between these compounds, acting as electron donors, and pi-acceptors such as chloranilic acid (CIA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). For automation of the analytical procedure a simple, fast and versatile single interface flow system (SIFA)was implemented guaranteeing a simplified performance optimisation, low maintenance and a cost-effective operation. Moreover, the single reaction interface assured a convenient and straightforward approach for implementing job`s method of continuous variations used to establish the stoichiometry of the formed CT complexes. Linear calibration plots for levothyroxine and liothyronine concentrations ranging from 5.0 x 10(-5) to 2.5 x 10(-4) mol L(-1) and 1.0 x 10(-5) to 1.0 x 10(-4) mol L(-1), respectively, were obtained, with good precision (R.S.D. <4.6% and <3.9%) and with a determination frequency of 26 h(-1) for both drugs. The results obtained for pharmaceutical formulations were statistically comparable to the declared hormone amount with relative deviations lower than 2.1%. The accuracy was confirmed by carrying out recovery studies, which furnished recovery values ranging from 96.3% to 103.7% for levothyroxine and 100.1% for liothyronine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.
Resumo:
This paper develops a Markovian jump model to describe the fault occurrence in a manipulator robot of three joints. This model includes the changes of operation points and the probability that a fault occurs in an actuator. After a fault, the robot works as a manipulator with free joints. Based on the developed model, a comparative study among three Markovian controllers, H(2), H(infinity), and mixed H(2)/H(infinity) is presented, applied in an actual manipulator robot subject to one and two consecutive faults.
Resumo:
This work presents an automated system for the measurement of form errors of mechanical components using an industrial robot. A three-probe error separation technique was employed to allow decoupling between the measured form error and errors introduced by the robotic system. A mathematical model of the measuring system was developed to provide inspection results by means of the solution of a system of linear equations. A new self-calibration procedure, which employs redundant data from several runs, minimizes the influence of probes zero-adjustment on the final result. Experimental tests applied to the measurement of straightness errors of mechanical components were accomplished and demonstrated the effectiveness of the employed methodology. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the development of an optimization model for the management and operation of a large-scale, multireservoir water supply distribution system with preemptive priorities. The model considers multiobjectives and hedging rules. During periods of drought, when water supply is insufficient to meet the planned demand, appropriate rationing factors are applied to reduce water supply. In this paper, a water distribution system is formulated as a network and solved by the GAMS modeling system for mathematical programming and optimization. A user-friendly interface is developed to facilitate the manipulation of data and to generate graphs and tables for decision makers. The optimization model and its interface form a decision support system (DSS), which can be used to configure a water distribution system to facilitate capacity expansion and reliability studies. Several examples are presented to demonstrate the utility and versatility of the developed DSS under different supply and demand scenarios, including applications to one of the largest water supply systems in the world, the Sao Paulo Metropolitan Area Water Supply Distribution System in Brazil.
Resumo:
In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell is introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause-effect relationship among the variables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage, electric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on experiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell model, improving the generation time and avoiding permanent damage to the equipment. (C) 2007 Elsevier B.V. All rights reserved.