987 resultados para Right ventricular dysfunction
Resumo:
Background-In adult human heart, both beta(1)- and beta(2)-adrenergic receptors mediate hastening of relaxation; however, it is unknown whether this also occurs in infant heart. We compared the effects of stimulation of beta(1)- and beta(2)-adrenergic receptors on relaxation and phosphorylation of phospholamban and troponin I in ventricle obtained from infants with tetralogy of Fallot. Methods and Results-Myocardium dissected from the right ventricular outflow tract of 27 infants (age range 2-1/2 to 35 months) with tetralogy of Fallot was set up to contract 60 times per minute. Selective stimulation of beta(1)-adrenergic receptors with (-)-norepinephrine (NE) and beta(2)-adrenergic receptors with (-)-epinephrine (EPI) evoked phosphorylation of phospholamban (at serine-16 and threonine-17) and troponin I and caused concentration-dependent increases in contractile force (-log EC50 [mol/L] NE 5.5+/-0.1, n=12; -EPI 5.6+/-0.1, n=13 patients), hastening of the time to reach peak force (-log EC50 [mol/L] NE 5.8+/--0.2; EPI 5.8+/-0.2) and 50% relaxation (-log EC50 [mol/L] NE 5.7+/-0.2: EPI 5.8+/-0.1), Ventricular membranes from Fallot infants, labeled with (-)-[I-125]-cyanopindolol, revealed a greater percentage of beta(1)- (71%) than beta(2)-adrenergic receptors (29%). Binding of (-)-epinephrine to beta(2)-receptors underwent greater GTP shifts than binding of (-)-norepinephrine to beta(1)-receptors. Conclusions-Despite their low density, beta(2)-adrenergic receptors are nearly as effective as beta(1)-adrenergic receptors of infant Fallot ventricle in enhancing contraction, relaxation, and phosphorylation of phospholamban and troponin I, consistent with selective coupling to G(s)-protein.
Resumo:
Background: Different hemodynamic parameters including static indicators of cardiac preload as right ventricular end-diastolic volume index (RVEDVI) and dynamic parameters as pulse pressure variation (PPV) have been used in the decision-making process regarding volume expansion in critically ill patients. The objective of this study was to compare fluid resuscitation guided by either PPV or RVEDVI after experimentally induced hemorrhagic shock. Methods: Twenty-six anesthetized and mechanically ventilated pigs were allocated into control (group I), PPV (group II), or RVEDVI (group III) group. Hemorrhagic shock was induced by blood withdrawal to target mean arterial pressure of 40 mm Hg, maintained for 60 minutes. Parameters were measured at baseline, time of shock, 60 minutes after shock, immediately after resuscitation with hydroxyethyl starch 6% (130/0.4), 1 hour and 2 hours thereafter. The endpoint of fluid resuscitation was determined as the baseline values of PPV and RVEDVI. Statistical analysis of data was based on analysis of variance for repeated measures followed by the Bonferroni test (p < 0.05). Results: Volume and time to resuscitation were higher in group III than in group II (group III = 1,305 +/- 331 mL and group II = 965 +/- 245 mL, p < 0.05; and group III = 24.8 +/- 4.7 minutes and group II = 8.8 +/- 1.3 minutes, p < 0.05, respectively). All static and dynamic parameters and biomarkers of tissue oxygenation were affected by hemorrhagic shock and nearly all parameters were restored after resuscitation in both groups. Conclusion: In the proposed model of hemorrhagic shock, resuscitation to the established endpoints was achieved within a smaller amount of time and with less volume when guided by PPV than when guided by pulmonary artery catheter-derived RVEDVI.
Resumo:
Prostacyclin (PgI(2)) and endothelium-derived nitric oxide (EDNO) are produced by the arterial and venous endothelium. In addition to their vasodilator action on vascular smooth muscle, both act together to inhibit platelet aggregation and promote platelet disaggregation. EDNO also inhibits platelet adhesion to the endothelium. EDNO and PgI(2) have been shown to be released from the cultured endocardial cells. In this study, we examined the release of vasoactive substances from the intact endocardium by using isolated rabbit hearts perfused with physiological salt solution (95% O(2)/5% CO(2), T = 37 degrees C). The right and left cardiac chambers were perfused through separate constant-flow perfusion loops (physiological salt solution, 8 ml min(-1)). Effluent from left and right cardiac, separately, was bioassayed on canine coronary artery smooth muscle, which had been contracted with prostaglandin F(2 alpha_)(2 x 10(-6) M) and no change in tension was exhibit. However, addition of calcium ionophore A23187 (10(-6) M) to the cardiac chambers` perfusion line induced vasodilation of the bioassay coronary ring, 61.4 +/- 7.4% versus 70.49 +/- 6.1% of initial prostaglandin F(2 alpha) contraction for the left and right cardiac chambers perfusate, respectively (mean +/- SEM, n = 10, p > 0.05). Production of vasodilator was blocked totally in the left heart but, only partially blocked in the right heart by adding indomethacin (10(-5) M) to the perfusate, respectively, 95.2 +/- 2.2% versus 41.5 +/- 4.8% (mean +/- SEM, n = 10, p < 0.05). 6-Keto prostaglandin F(1 alpha), measured in the endocardial superfusion effluent was also higher for the left cardiac chambers than for the right at the time of stimulation with the A23187, respectively, 25385.88 +/- 5495 pg/ml (n = 8) versus 13,132.45 +/- 1839.82 pg/ml (n = 8), (p < 0.05). These results showed that cyclooxygenase pathway plays major role in generating vasoactive substances for the left cardiac chamber endocardium; while it is not the main pathway for the right ventricular endocardium at which EDNO and PgI(2) Could act together and potentiate their antithrombogenic activities in isolated perfused rabbit heart. This may be an explanation for the intraventricular thrombus mostly seen in left ventricle rather than in right ventricle as a complication of myocardial infarction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Myocardial infarction leads to compensatory ventricular remodeling. Disturbances in myocardial contractility depend on the active transport of Ca2+ and Na+, which are regulated by Na+-K+ ATPase. Inappropriate regulation of Na+-K+ ATPase activity leads to excessive loss of K+ and gain of Na+ by the cell. We determined the participation of Na+-K+ ATPase in ventricular performance early and late after myocardial infarction. Wistar rats (8-10 per group) underwent left coronary artery ligation (infarcted, Inf) or sham-operation (Sham). Ventricular performance was measured at 3 and 30 days after surgery using the Langendorff technique. Left ventricular systolic pressure was obtained under different ventricular diastolic pressures and increased extracellular Ca2+ concentrations (Ca2+e) and after low and high ouabain concentrations. The baseline coronary perfusion pressure increased 3 days after myocardial infarction and normalized by 30 days (Sham 3 = 88 ± 6; Inf 3 = 130 ± 9; Inf 30 = 92 ± 7 mmHg; P < 0.05). The inotropic response to Ca2+e and ouabain was reduced at 3 and 30 days after myocardial infarction (Ca2+ = 1.25 mM; Sham 3 = 70 ± 3; Inf 3 = 45 ± 2; Inf 30 = 29 ± 3 mmHg; P < 0.05), while the Frank-Starling mechanism was preserved. At 3 and 30 days after myocardial infarction, ventricular Na+-K+ ATPase activity and contractility were reduced. This Na+-K+ ATPase hypoactivity may modify the Na+, K+ and Ca2+ transport across the sarcolemma resulting in ventricular dysfunction.
Resumo:
The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Área de especialização: Ultrassonografia cardiovascular
Resumo:
INTRODUCTION: Adults with repaired tetralogy of Fallot (TOF) may be at risk for progressive right ventricular (RV) dilatation and dysfunction, which is commonly associated with arrhythmic events. In frequently volume-overloaded patients with congenital heart disease, tissue Doppler imaging (TDI) is particularly useful for assessing RV function. However, it is not known whether RV TDI can predict outcome in this population. OBJECTIVE: To evaluate whether RV TDI parameters are associated with supraventricular arrhythmic events in adults with repaired TOF. METHODS: We studied 40 consecutive patients with repaired TOF (mean age 35 +/- 11 years, 62% male) referred for routine echocardiographic exam between 2007 and 2008. The following echocardiographic measurements were obtained: left ventricular (LV) ejection fraction, LV end-systolic volume, LV end-diastolic volume, RV fractional area change, RV end-systolic area, RV end-diastolic area, left and right atrial volumes, mitral E and A velocities, RV myocardial performance index (Tei index), tricuspid annular plane systolic excursion (TAPSE), myocardial isovolumic acceleration (IVA), pulmonary regurgitation color flow area, TDI basal lateral, septal and RV lateral peak diastolic and systolic annular velocities (E' 1, A' 1, S' 1, E' s, A' s, S' s, E' rv, A' rv, S' rv), strain, strain rate and tissue tracking of the same segments. QRS duration on resting ECG, total duration of Bruce treadmill exercise stress test and presence of exercise-induced arrhythmias were also analyzed. The patients were subsequently divided into two groups: Group 1--12 patients with previous documented supraventricular arrhythmias (atrial tachycardia, fibrillation or flutter) and Group 2 (control group)--28 patients with no previous arrhythmic events. Univariate and multivariate analysis was used to assess the statistical association between the studied parameters and arrhythmic events. RESULTS: Patients with previous events were older (41 +/- 14 vs. 31 +/- 6 years, p = 0.005), had wider QRS (173 +/- 20 vs. 140 +/- 32 ms, p = 0.01) and lower maximum heart rate on treadmill stress testing (69 +/- 35 vs. 92 +/- 9%, p = 0.03). All patients were in NYHA class I or II. Clinical characteristics including age at corrective surgery, previous palliative surgery and residual defects did not differ significantly between the two groups. Left and right cardiac chamber dimensions and ventricular and valvular function as evaluated by conventional Doppler parameters were also not significantly different. Right ventricular strain and strain rate were similar between the groups. However, right ventricular myocardial TDI systolic (Sa: 5.4+2 vs. 8.5 +/- 3, p = 0.004) and diastolic indices and velocities (Ea, Aa, septal E/Ea, and RV free wall tissue tracking) were significantly reduced in patients with arrhythmias compared to the control group. Multivariate linear regression analysis identified RV early diastolic velocity as the sole variable independently associated with arrhythmic history (RV Ea: 4.5 +/- 1 vs. 6.7 +/- 2 cm/s, p = 0.01). A cut-off for RV Ea of < 6.1 cm/s identified patients in the arrhythmic group with 86% sensitivity and 59% specificity (AUC = 0.8). CONCLUSIONS: Our results suggest that TDI may detect RV dysfunction in patients with apparently normal function as assessed by conventional echocardiographic parameters. Reduction in RV early diastolic velocity appears to be an early abnormality and is associated with occurrence of arrhythmic events. TDI may be useful in risk stratification of patients with repaired tetralogy of Fallot.
Resumo:
INTRODUCTION: Despite significant left ventricular (LV) systolic dysfunction and cardiomegaly, pulmonary congestion does not seem to be a major finding in Chagas' cardiomyopathy (CC). This study sought to identify echocardiographic parameters associated with pulmonary congestion in CC and in dilated cardiomyopathy of other etiologies, such as non-CC (NCC), and to compare pulmonary venous hypertension between the two entities. METHODS: A total of 130 consecutive patients with CC and NCC, with similar echocardiographic characteristics, were assessed using Doppler echocardiography and chest radiography. Pulmonary venous vessel abnormalities were graded using a previously described pulmonary congestion score, and this score was compared with Doppler echocardiographic parameters. RESULTS: NCC patients were older than CC patients (62.4 ± 13.5 × 47.8 ± 11.2, p = 0.00), and there were more male subjects in the CC group (66.2% × 58.5%, p = 0.4). Pulmonary venous hypertension was present in 41 patients in the CC group (63.1%) and in 63 (96.9%) in the NCC group (p = 0.0), the mean lung congestion score being 3.2 ± 2.3 and 5.9 ± 2.6 (p = 0.0), respectively. On linear regression multivariate analysis, the E/e' ratio (β = 0.13; p = 0.0), LV diastolic diameter (β = 0.06; p = 0.06), left atrial diameter (β = 0.51; p = 0.08), and right ventricular (RV) end-diastolic diameter (β = 0.02; p = 0.48) were the variables that correlated with pulmonary congestion in both groups. CONCLUSIONS: Pulmonary congestion was less significant in patients with CC. The degree of LV of systolic and diastolic dysfunction and the RV diameter correlated with pulmonary congestion in both groups. The E/e' ratio was the hallmark of pulmonary congestion in both groups.
Resumo:
OBJECTIVE: To determine in arrhythmogenic right ventricular cardiomyopathy the value of QT interval dispersion for identifying the induction of sustained ventricular tachycardia in the electrophysiological study or the risk of sudden cardiac death. METHODS: We assessed QT interval dispersion in the 12-lead electrocardiogram of 26 patients with arrhythmogenic right ventricular cardiomyopathy. We analyzed its association with sustained ventricular tachycardia and sudden cardiac death, and in 16 controls similar in age and sex. RESULTS: (mean ± SD). QT interval dispersion: patients = 53.8±14.1ms; control group = 35.0±10.6ms, p=0.001. Patients with induction of ventricular tachycardia: 52.5±13.8ms; without induction of ventricular tachycardia: 57.5±12.8ms, p=0.420. In a mean follow-up period of 41±11 months, five sudden cardiac deaths occurred. QT interval dispersion in this group was 62.0±17.8, and in the others it was 51.9±12.8ms, p=0.852. Using a cutoff > or = 60ms to define an increase in the degree of the QT interval dispersion, we were able to identify patients at risk of sudden cardiac death with a sensitivity of 60%, a specificity of 57%, and positive and negative predictive values of 25% and 85%, respectively. CONCLUSION: Patients with arrhythmogenic right ventricular cardiomyopathy have a significant increase in the degree of QT interval dispersion when compared with the healthy population. However it, did not identify patients with induction of ventricular tachycardia in the electrophysiological study, showing a very low predictive value for defining the risk of sudden cardiac death in the population studied.
Hemodynamic Effects of Noninvasive Ventilation in Patients with Venocapillary Pulmonary Hypertension
Resumo:
Background: The hemodynamic effects of noninvasive ventilation with positive pressure in patients with pulmonary hypertension without left ventricular dysfunction are not clearly established. Objectives: Analyze the impact of increasing airway pressure with continuous positive airway pressure on hemodynamic parameters and, in particular, on cardiac output in patients with variable degrees of pulmonary hypertension. Methods: The study included 38 patients with pulmonary hypertension caused by mitral stenosis without left ventricular dysfunction or other significant valvulopathy. The hemodynamic state of these patients was analyzed in three conditions: baseline, after continuous positive pressure of 7 cmH2O and, finally, after pressure of 14 cmH2O. Results: The population was composed of predominantly young and female individuals with significant elevation in pulmonary arterial pressure (mean systolic pressure of 57 mmHg). Of all variables analyzed, only the right atrial pressure changed across the analyzed moments (from the baseline condition to the pressure of 14 cmH2O there was a change from 8 ± 4 mmHg to 11 ± 3 mmHg, respectively, p = 0.031). Even though there was no variation in mean cardiac output, increased values in pulmonary artery pressure were associated with increased cardiac output. There was no harmful effect or other clinical instability associated with use application of airway pressure. Conclusion: In patients with venocapillary pulmonary hypertension without left ventricular dysfunction, cardiac output response was directly associated with the degree of pulmonary hypertension. The application of noninvasive ventilation did not cause complications directly related to the ventilation systems.