936 resultados para Reduced Folate Carrier Protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In diabetes mellitus (DM), podocyte apoptosis leads to albuminuria and nephropathy progression. Low-density lipoprotein receptor-related protein 6 (LRP6) is WNT pathway receptor that is involved in podocyte death, adhesion and motility. Glycogen synthase kinase 3 (GSK3) interaction with p53 (GSK3-p53) promotes apoptosis in carcinoma cells. It is unknown if GSK3-p53 contributes to podocyte apoptosis in DM. In experimental DM, green tea (GT) reduces albuminuria by an unknown mechanism. In the present study, we assessed the role of the GSK3β-p53 in podocyte apoptosis and the effects of GT on these abnormalities. In diabetic spontaneously hypertensive rats (SHRs), GT prevents podocyte's p-LRP6 expression reduction, increased GSK3β-p53 and high p53 levels. In diabetic SHR rats, GT reduces podocyte apoptosis, foot process effacement and albuminuria. In immortalized mouse podocytes (iMPs), high glucose (HG), silencing RNA (siRNA) or blocking LRP6 (DKK-1) reduced p-LRP6 expression, leading to high GSK3β-p53, p53 expression, apoptosis and increased albumin influx. GSK3β blockade by BIO reduced GSK3β-p53 and podocyte apoptosis. In iMPs under HG, GT reduced apoptosis and the albumin influx by blocking GSK3β-p53 following the rise in p-LRP6 expression. These effects of GT were prevented by LRP6 siRNA or DKK-1. In conclusion, in DM, WNT inhibition, via LRP6, increases GSK3β-p53 and podocyte apoptosis. Maneuvers that inactivate GSK3β-p53, such as GT, may be renoprotective in DM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crohn´s disease (CD) is a chronic transmural inflammation of the gastrointestinal tract of unknown cause. Malnutrition associated with active CD has been reduced although obesity has increased. Dietary strategies such as those with high-protein have been proposed to reduce body fat. This study compares the effects of two supplements on the nutritional status of CD patients. 68 CD patients were randomized in two groups: whey protein group (WP) and soy protein group (SP). Using bioimpedance analysis, anthropometry and albumin and pre-albumin dosages the nutritional status was measured before starting the intervention and after 8 and 16 weeks. The disease activity was determined by Crohn's Disease Activity Index and serum C-reactive protein dosage and dietary intake by 24h dietary recalls. Forty-one patients concluded the study and both supplements changed body composition similarly. Triceps skin fold thickness (p< 0.001) and body fat percentage (p=0.001) decreased, whereas mid-arm muscle circumference (p=0.004), corrected arm muscle area (p=0.005) and body lean percentage (p=0.001) increased. For Crohn's disease patients undergoing anti TNF-alpha and azatioprine therapies, supplementation with whey and soy proteins changes body composition through reduction of body fat and thus contributes to control inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influences the phosphorylation of signaling pathway mediators involved in cancer and is thus postulated to be a tumor-promoting enzyme, but neither unequivocal clinical evidence nor convincing mechanistic actions for a role of LMWPTP have been identified. In the present study, we show that LMWPTP expression is not only significantly increased in colorectal cancer (CRC), but also follows a step-wise increase in different levels of dysplasia. Chemical inhibition of LMWPTP significantly reduces CRC growth. Furthermore, downregulation of LMWPTP in CRC leads to a reduced migration ability in both 2D- and 3D-migration assays, and sensitizes tumor cells to the chemotherapeutic agent 5-FU. In conclusion, this study shows that LMWPTP is not only overexpressed in colorectal cancer, but it is correlated with the malignant potential of this cancer, suggesting that this phosphatase may act as a predictive biomaker of CRC stage and represents a rational novel target in the treatment of this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (P<0.05). The basal glycerol release in the fat fragments was 1.5-fold higher in the DEX rats (P<0.05). The phosphorylation of protein kinase B (PKB) at ser(473) decreased by 44%, whereas, the phosphorylation of insulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (P<0.05). The basal phosphorylation of c-jun-N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B (IKKβ) proteins was reduced by 46% and 58%, respectively, in the adipose tissue of the DEX rats (P<0.05). This was paralleled with a significant reduction (47%) in the glucocorticoid receptor (GR) protein content in the adipose tissue of the DEX rats (P<0.05). The insulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKβ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the levels of sodium monensin on lactating cows and their effects on productive performance and milk protein fraction composition. It was used 12 Holstein cows, distributed in four balanced 3 × 3 Latin squares, and fed three diets: one control without monensin, and two diets with monensin at the levels of 24 or 48 mg/kg DM added to the concentrate. Milk production was daily measured throughout the entire experimental period. The samples used for analysis of milk composition were collected on two alternated days from the two daily milking. Non-protein nitrogen, total nitrogen and non-casein nitrogen contents were directly evaluated in the milk, and casein, whey protein and true protein contents were indirectly determined. The use of monensin in the rations reduced dry matter and nutrient intake, especially when diet with 48 mg/kg of dry matter was given. The ration with 24 mg/kg of DM increased milk production, with or without correction, and also fat and lactose yield, and it improved productive efficiency. The levels of monensin in the ratios did not influence contents of milk crude protein, non-protein nitrogen, non-casein nitrogen, true protein, casein, casein/true protein ratio, whey protein, and of all those fractions expressed as percentage of crude protein. The utilization of monensin in the ratio at the dose of 24 mg/kg of DM influences positively the productive performance of lactating cows, and it does not influence the composition of milk protein fractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It has been well documented over past decades that interaction of pathogens with the extracellular matrix (ECM) plays a primary role in host cell attachment and invasion. Adherence to host tissues is mediated by surface-exposed proteins expressed by the microorganisms during infection. The mechanisms by which pathogenic leptospires invade and colonize the host remain poorly understood since few virulence factors contributing to the pathogenesis of the disease have been identified. Whole-genome sequencing analysis of L. interrogans allowed identification of a repertoire of putative leptospiral surface proteins. Results: Here, we report the identification and characterization of a new leptospiral protein that exhibits extracellular matrix-binding properties, called as Lsa21 (leptospiral surface adhesin, 21 kDa). Compatible with its role in adhesion, the protein was shown to be surface-exposed by indirect immunofluorescence. Attachment of Lsa21 to laminin, collagen IV, and plasma fibronectin was specific and dose dependent. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. The gene coding for Lsa21 is present in pathogenic strains belonging to the L. interrogans species but was not found in the saprophytic L. biflexa serovar Patoc strain Patoc 1. Loss of gene expression occurs upon culture attenuation of pathogenic strains. Environmental factors such as osmolarity and temperature affect Lsa21 expression at the transcriptional level. Moreover, anti-Lsa21 serum labeled liver and kidney tissues of human fatal cases of leptospirosis. Conclusion: Our data suggest a role of Lsa21 in the pathogenesis of leptospirosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Recent studies have supported the concept of ""fetal programming"" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Methods: Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. Results: We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. Conclusions: In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central role of reactive oxygen species (ROS) in osteoclast differentiation and in bone homeostasis prompted us to characterize the redox regulatory system of osteoclasts. In this report, we describe the expression and functional characterization of PAMM, a CXXC motif-containing peroxiredoxin 2-like protein expressed in bone marrow monocytes on stimulation with M-CSF and RANKL. Expression of wild-type (but not C to G mutants of the CXXC domain) PAMM in HEK293 cells results in an increased GSH/GSSG ratio, indicating a shift toward a more reduced environment. Expression of PAMM in RAW264.7 monocytes protected cells from hydrogen peroxide-induced oxidative stress, indicating that PAMM regulates cellular redox status. RANKL stimulation of RAW 264.7 cells caused a decrease in the GSH/GSSG ratio (reflecting a complementary increase in ROS). In addition, RANKL-induced osteoclast formation requires phosphorylation and translocation of NF-kappa B and c-Jun. In stably transfected RAW 264.7 cells, PAMM overexpression prevented the reduction of GSH/GSSG induced by RANKL. Concurrently, PAMM expression completely abolished RANKL-induced p100 NF-kappa B and c-Jun activation, as well as osteoclast formation. We conclude that PAMM is a redox regulatory protein that modulates osteoclast differentiation in vitro. PAMM expression may affect bone resorption in vivo and help to maintain bone mass. Antioxid. Redox Signal. 13, 27-37.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Background: We aimed to evaluate the ascorbic acid concentration in secondary aqueous humour (AH) from glaucomatous patients and to compare it with primary AH from primary open-angle glaucoma patients and non-glaucomatous patients. Methods: Primary AH samples were prospectively obtained from clinically uncontrolled primary open-angle glaucoma patients and senile cataract patients (controls) prior to trabeculectomy and cataract surgery. Secondary AH samples were obtained from eyes with previous intraocular surgery, prior to trabeculectomy or cataract surgery. AH (0.1 mL) was aspirated by inserting a 26-gauge needle into the anterior chamber just before surgery and then immediately stored at -80 degrees C. The ascorbic acid concentration was determined in a masked fashion by high-pressure liquid chromatography. Results: A total of 18 patients with senile cataract, 16 glaucomatous patients with primary AH (no previous intraocular surgery) and 11 glaucomatous patients with secondary AH (previous intraocular surgery) were included. There was no difference in mean age between groups (P = 0.15). The mean +/- standard deviation concentration of ascorbic acid in the secondary AH from glaucomatous patients (504 +/- 213 mu mol/L [95% confidence interval {CI}, 383-624]) was significantly lower than the concentration of ascorbic acid found in the primary aqueous of primary open-angle glaucoma (919 +/- 427 mu mol/L [95% CI, 709-1128]) and control patients (1049 +/- 433 mu mol/L [95% CI, 848-1249]; P < 0.01, Kruskal-Wallis test). Conclusions: The ascorbic acid concentration in secondary AH of glaucomatous patients was approximately twofold lower in comparison with primary AH of glaucomatous and cataract patients. The implications of a reduced concentration of ascorbic acid in the secondary AH deserve further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The redox proteins that incorporate a thioredoxin fold have diverse properties and functions. The bacterial protein-folding factor DsbA is the most oxidizing of the thioredoxin family. DsbA catalyzes disulfide-bond formation during the folding of secreted proteins, The extremely oxidizing nature of DsbA has been proposed to result from either domain motion or stabilizing active-site interactions in the reduced form. In the domain motion model, hinge bending between the two domains of DsbA occurs as a result of redox-related conformational changes. Results: We have determined the crystal structures of reduced and oxidized DsbA in the same crystal form and at the same pH (5.6). The crystal structure of a lower pH form of oxidized DsbA has also been determined (pH 5.0). These new crystal structures of DsbA, and the previously determined structure of oxidized DsbA at pH 6.5, provide the foundation for analysis of structural changes that occur upon reduction of the active-site disulfide bond. Conclusions: The structures of reduced and oxidized DsbA reveal that hinge bending motions do occur between the two domains. These motions are independent of redox state, however, and therefore do not contribute to the energetic differences between the two redox states, instead, the observed domain motion is proposed to be a consequence of substrate binding. Furthermore, DsbA's highly oxidizing nature is a result of hydrogen bond, electrostatic and helix-dipole interactions that favour the thiolate over the disulfide at the active site.