895 resultados para Reactive power sources
Resumo:
Exploring high-performance anode materials is currently one of the most urgent issues towards practical sodium-ion batteries (SIBs). In this work, Bi2S3 is demonstrated to be a high-capacity anode for SIBs for the first time. The specific capacity of Bi2S3 nanorods achieves up to 658 and 264 mAh g-1 at a current density of 100 and 2000 mA g-1, respectively. A full cell with Na3V2(PO4)3-based cathode is also assembled as a proof of concept and delivers 340 mAh g-1 at 100 mA g-1. The sodium storage mechanism of Bi2S3 is investigated by ex-situ XRD coupled with high-resolution TEM (HRTEM), and it is found that sodium storage is achieved by a combined conversion-intercalation mechanism.
Resumo:
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.
Resumo:
Ruthenium dioxide is deposited on stainless steel (SS) substrate by galvanostatic oxidation of Ru3+. At high current densities employed for this purpose, there is oxidation of water to oxygen, which occurs in parallel with Ru3+ oxidation. The oxygen evolution consumes a major portion of the charge. The oxygen evolution generates a high porosity to RuO2 films, which is evident from scanning electron microscopy studies. RuO2 is identified by X-ray photoelectron spectroscopy. Cyclic voltammetry and galvanostatic charge–discharge cycling studies indicate that RuO2/SS electrodes possess good capacitance properties. Specific capacitance of 276 F g−1 is obtained at current densities as high as 20 mA cm−2 (13.33 A g−1). Porous nature of RuO2 facilitates passing of high currents during charge–discharge cycling. RuO2/SS electrodes are thus useful for high power supercapacitor applications.
Resumo:
The performance of exfoliated graphite (EG)–ruthenium oxide (RuOx) composites as binderless electrodes is evaluated for electrochemical capacitors (ECs). A composite of EG–RuOx is prepared by a modified sol–gel process. The material is characterized using X-ray diffraction and microscopy. Electrochemical capacitors with the composite electrodes in the presence of aqueous sulfuric acid (H2SO4) electrolyte are evaluated using voltammetry, impedance and charge–discharge studies. Cyclic voltammetry reveals very stable current–voltage behaviour up to several thousands of cycles, as well as high specific capacitances, e.g., a few hundreds of farads per gram for the composite that contains 16.5 wt.% RuOx.
Resumo:
A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm(-1) at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg2+ ion determined by means of a combination of d.c. and ac. techniques is similar to 0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel alkaline direct borohydride fuel cell (ADBFC) using varying concentrations of hydrogen peroxide as oxidant and sodium borohydride with sodium hydroxide, each of differing concentration, as fuel is reported. A peak power density of ca. 150 in W cm(-2) at a cell voltage of 540 mV can be achieved from the optimized ADBFC operating at 70 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Crystalline Bi5NbO10 nanoparticles have been achieved through a modified sol–gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi5NbO10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5–60 nm Bi5NbO10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi5NbO10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200–350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi5NbO10 solid solutions at 700 °C is 2.86 Ω−1 m−1 which is in same order of magnitude for Y2O3-stabilized ZrO2 ceramics at same temperature. These results suggest that Bi5NbO10 is a promising material for an oxygen ion conductor.
Resumo:
The catalytic activity of cobalt phthalocyanine monomer and some of its polymeric derivatives towards the electroreduction of molecular oxygen in salt and alkaline solutions is examined. It is found that most of these complexes exhibit a higher catalytic activity than the cobalt phthalocyanine monomer.
Resumo:
Statistical methods for optimizing the morphology of oxide-based, bifunctional oxygen electrodes for use in rechargeable metal/air batteries are examined with regard to binder composition, compaction time, and compaction load. Results show that LaNiO3 with PTFE binder in a nickel mesh envelope provides a satisfactory electrode.
Resumo:
Microchips for use in biomolecular analysis show a lot of promise for medical diagnostics and biomedical basic research. Among the potential advantages are more sensitive and faster analyses as well as reduced cost and sample consumption. Due to scaling laws, the surface are to volume ratios of microfluidic chips is very high. Because of this, tailoring the surface properties and surface functionalization are very important technical issues for microchip development. This thesis studies two different types of functional surfaces, surfaces for open surface capillary microfluidics and surfaces for surface assisted laser desorption ionization mass spectrometry, and combinations thereof. Open surface capillary microfluidics can be used to transport and control liquid samples on easily accessible open surfaces simply based on surface forces, without any connections to pumps or electrical power sources. Capillary filling of open partially wetting grooves is shown to be possible with certain geometries, aspect ratios and contact angles, and a theoretical model is developed to identify complete channel filling domains, as well as partial filling domains. On the other hand, partially wetting surfaces with triangular microstructures can be used for achieving directional wetting, where the water droplets do not spread isotropically, but instead only spread to a predetermined sector. Furthermore, by patterning completely wetting and superhydrophobic areas on the same surface, complex droplet shapes are achieved, as the water stretches to make contact with the wetting surface, but does not enter into the superhydrophobic domains. Surfaces for surface assisted laser desorption ionization mass spectrometry are developed by applying various active thin film coatings on multiple substrates, in order to separate surface and bulk effects. Clear differences are observed between both surface and substrate layers. The best performance surfaces consisted of amorphous silicon coating and an inorganic-organic hybrid substrate, with nanopillars and nanopores. These surfaces are used for matrix-free ionization of drugs, peptides and proteins, and for some analytes, the detection limits were in the high attomoles. Microfluidics and laser desorption ionization surfaces are combined on a functionalized drying platforms, where the surface is used to control the shape of the deposited analyte droplet, and the shape of the initial analyte droplet affects the dried droplet solute deposition pattern. The deposited droplets can then directly detected by mass spectrometry. Utilizing this approach, results of analyte concentration, splitting and separation are demonstrated.
Resumo:
Previous research has been inconclusive regarding the impact of those who invest in entrepreneurs. Consider for a moment how potentially important they are to entrepreneurs. They for example decide who deserves funding, how much time they contribute to their portfolio firms, how they grant entrepreneurs access to their networks, and help entrepreneurs acquire additional funding. In sum, investors potentially have a great impact on the success of entrepreneurs. It is therefore important that we better understand the environment, relationships and context in which parties operate. This thesis contains five articles that explore investors’ and entrepreneurs’ relationships from various viewpoints, in theoretical frameworks, and use a variety of data and research methods. The first article is a literature review that summarises what we know of venture capital, business angel and corporate venture capital funding. The second article studies the entrepreneurs’ investor selection process, its consequences, and identifies key factors that influence the process. Earlier, the common approach has been to concentrate research on the investors’ selection policy, not the entrepreneurs’. The data and conclusions are based on multiple case studies. The article analyses how entrepreneurs can ensure that they get the best possible investor, when it is possible for an entrepreneur to select an investor, and what are the consequences of investor selection. The third article employs power constructs (dependency, power balance/imbalance, power sources) and analyses their applicability in the investor-entrepreneur relationship. Power constructs are extensively studied and utilised in the management and organisation literature. In entrepreneur investor relationships, power aspects are rarely analysed. However, having the ability to “get others to do things they would not otherwise do” is a very common factor in the investor-entrepreneur relationship. Therefore, employing and analysing the applicability of power constructs in this setting is well founded. The article is based on a single case study but suggests that power constructs could be applicable and consequently provide additional insights into the investor-entrepreneur relationship. The fourth article studies the role of advisors in the venture capital investment process and analyses implications for research and practice, particularly from the entrepreneurs’ perspective. The common entrepreneurial finance literature describes the entrepreneur-investor relationship as linear and bilateral. However, it was discovered that advisors may influence the relationship. In this article, the role of advisors, operating procedures and advisors’ impact on different parties is analysed. The fifth article concentrates on investors’ certification effect. The article measures and demonstrates that venture capital investment is likely to increase the credibility (in terms of media attention) of early stage firms, those that most often need additional credibility. Understanding investor certification can affect how entrepreneurs evaluate investment offers and how investors can make their offers appear more lucrative.
Resumo:
Catalytic activities of some transition metal-phthalocyanine complexes towards electroreduction of molecular oxygen are examined on Nafion®-bound and bare porous carbon electrodes in 2.5 M H2SO4 electrolyte. It is found that these metal complexes exhibit better catalytic activities towards oxygen reduction with the Nafion®-bound electrodes.
Resumo:
This paper presents the analysis and study of voltage collapse at any converter bus in an AC system interconnected by multiterminal DC (MTDC) links. The analysis is based on the use of the voltage sensitivity factor (VSF) as a voltage collapse proximity indicator (VCPI). In this paper the VSF is defined as a matrix which is applicable to MTDC systems. The VSF matrix is derived from the basic steady state equations of the converter, control, DC and AC networks. The structure of the matrix enables the derivation of some of the basic properties which are generally applicable. A detailed case study of a four-terminal MTDC system is presented to illustrate the effects of control strategies at the voltage setting terminal (VST) and other terminals. The controls considered are either constant angle, DC voltage, AC voltage, reactive current and reactive power at the VST and constant power or current at the other terminals. The effect of the strength of the AC system (measured by short circuit ratio) on the VSF is investigated. Several interesting and new results are presented. An analytical expression for the self VSF at VST is also derived for some specific cases which help to explain the number of transitions in VSF around the critical values of SCR.
Resumo:
The impedance of sealed nickel/cadmium cells around a cell e.m.f. of 0.0 V was measured at five different temperatures between � 10 and +30 °C. The results show that the behaviour is similar at all temperatures. Based on the experimental results, the relation between charge-transfer resistance (Rct) and temperature (T) has been established for the Volmer reaction. Further, the value of cathodic transfer coefficient (?) has been estimated.