944 resultados para Reaction-mechanism


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quasi-reversible and direct electron transfer was observed between an iodide-modified Au electrode and cytochrome c, as well as between cytochrome c in an iodide-containing solution and a bare Au electrode. The results suggest that an electrostatic intera

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrocatalytic reduction of 1,2-dibromoethane and tetrabromoethane with CoTPP in DMF solutions containing 0.1 M TBAP was investigated at a Pt ultramicroelectrode. The experimental results indicated that CoTPP obviously exhibited catalytic activity for 1,2-dibromoethane and tetrabromoethane. The rate constants of 1,2-dibromoethane and tetrabromoethane in this system were calculated to be 0.14 x 10(3) and 0.5 x 10(2) M-1 S-1, respectively. The reaction mechanism of 1,2-dibromoethane and tetrabromoethane reduction electrocatalysed by CoTPP in 0.1 M TBAP DMF solution is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geopolymer gelatinous material was prepared by ferroalloy slag (signed with NKT in laboratory) and circulating fluidization bed slag (CFB slag, signed with NM in laboratory) produced from Heshan city, Guangxi zhuang autonomous region, China. The mechanical properties of the geopolymer made of high content ferroalloy slag can reach the standard of 42.5# portland blastfurnace-slag cement, and it’s processing technology is more simple and not need of mill and burn and will not produce harmful gas. By means of chemical and XRD analyses, it is concluded that NKT is a kind of acidity water-granulated slag with better activation and fit to be activated by alkali activators. Low-cost industrial gypsum (signed with NG in laboratory), analytic reagent oxide(signed with NH in laboratory) and sulfate(signed with NS in laboratory) were selected as alkali activation in the experiment. The results showed NH is a good alkali activator for NKT. Both NH and NG can activate ferroally slag’s activities, but NS can’t alone. The activation effect of superimposing activation of NH and NG excel by separateness. Based on those experiments, optimization compounds were carried out: (1) NKT: NH: NG = 80: 10: 10 and (2) NM: NKT: NS: NG: NH = 10: 70: 2: 8: 10。. The soundness of the test blocks is good by boiling examination. Through XRD, SEM, IR, NMR analyses of geopolymer, the reaction mechanism of geopolymer prepared by alkalescent activating in solid wastes was discussed in the thesis first. It is point out, there is difference in reaction mechanism between traditional geopolymer preparation and the preparation of alkalescent activating solid wastes because NG is a industry product. There is the similar process of depolymerization and reunion of Si-O bond. The latter preparation process generate new subtance but the former doesn’t. In the experiment, we found a performance of NKT that the water requirement of normal consistency of geopolymer reduces with increasing content of NKT. The result shows NKT has some ability to reduce water requirement. The performance is worthy of further research and utilization. Making use of solid wastes to prepare geopolymer, not only can settle environment problem caused by a great deal of dump of NKT, but also settle the shortage of natural resources. Moreover it could take economic, environmental and social benefits and settle thoroughly contradiction in the environment protection and regional economy development and promote circulation economy development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature-programmed reduction (TPR) characterization of the LiNiLaOx/Al2O3 catalyst before or after partial oxidation of methane (POM) reaction and a series of O-2, CH4 and CH4/O-2 pulse reaction experiments over the catalyst under different pretreatments were performed. It was found that CH4 dissociatively adsorbs on active center nickel producing H-2 and surface carbon, C(a). The surface carbon reacts with surface lattice oxygen or surface adsorbed oxygen to produce CO. Because the activation barrier for the reaction C(a)+ O(a) =CO(a) is the highest among all the elementary reactions, the rate-determining step of the POM may be the reaction C(a) + O(a) =CO(a).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comprehensive study of the low-temperature oxidation of CO was conducted over Pd/TiO2, Pd/CeO2, and Pd/CeO2-TiO2 pretreated by a series of calcination and reduction processes. The catalysts were characterized by N-2 adsorption, XRD, H-2 chemisorption, and diffuse-reflectance infrared Fourier transform spectroscopy. The results indicated that Pd/CeO2-TiO2 has the highest activity among these catalysts, whether in the calcined state or in the reduced state. The activity of all of the catalysts can be improved significantly by the pre-reduction, and it seems that the reduction at low temperature (LTR. 150 degrees C) is more effective than that at high temperature (HTR, 500 degrees C), especially for Pd/CeO2 and Pd/TiO2. The catalysts with various supports and pretreatments are also different in the reaction mechanisms for CO oxidation at low temperature. Over Pd/TiO2, the reaction may proceed through a surface reaction between the weakly adsorbed CO and oxygen (Langmuir-Hinshelwood). For Ce-containing catalysts, however, an alteration of reaction mechanism with temperature and the involvement of the oxygen activation at different sites were observed, and the light-off profiles of the calcined Pd/CeO2 and Pd/CeOi-TiO2 show a distortion before CO conversion achieves 100%. At low temperature, CO oxidation proceeds mainly via the reaction between the adsorbed CO on Pd-0 sites and the lattice oxygen of surface CeO2 at the Pd-Ce interface, whereas at high temperature it proceeds via the reaction between the adsorbed CO and oxygen. The high activity of Pd/CeO2-TiO2 for the low-temperature CO oxidation was probably due to the enhancements of both CO activation, caused by the facilitated reduction of Pd2+ to Pd-0, and oxygen activation, through the improvement of the surface oxygen supply and the oxygen vacancies formation. The reduction pretreatment enhances metal-support interactions and oxygen vacancy formation and hence improves the activity of CO oxidation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HSAPO-34 molecular sieve was employed in chloromethane conversion and showed high performance in activity and selectivity in production of light olefins. Our detailed IR investigation allowed the identification of the active sites and the adsorbed species and demonstrated that the conversion started from 350 degrees C with alkoxy group as the intermediate. The fixed-bed catalytic testing evidenced that in the range of 350-500 degrees C, 70-80% of chloromethane was transferred to ethylene, propylene and butenes. Increasing reaction temperature favors the conversion and enhances the yield of lighter olefins. A very important reversible phenomenon, the breaking of Al-O-P bonds upon adsorption of HCl, a main product of reaction to generate a large amount of P-OH groups and the recovery of Al-O-P upon removal of HCI was revealed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Copper is the main interconnect material in microelectronic devices, and a 2 nm-thick continuous Cu film seed layer needs to be deposited to produce microelectronic devices with the smallest features and more functionality. Atomic layer deposition (ALD) is the most suitable method to deposit such thin films. However, the reaction mechanism and the surface chemistry of copper ALD remain unclear, which is deterring the development of better precursors and design of new ALD processes. In this thesis, we study the surface chemistries during ALD of copper by means of density functional theory (DFT). To understand the effect of temperature and pressure on the composition of copper with substrates, we used ab initio atomistic thermodynamics to obtain phase diagram of the Cu(111)/SiO2(0001) interface. We found that the interfacial oxide Cu2O phases prefer high oxygen pressure and low temperature while the silicide phases are stable at low oxygen pressure and high temperature for Cu/SiO2 interface, which is in good agreement with experimental observations. Understanding the precursor adsorption on surfaces is important for understanding the surface chemistry and reaction mechanism of the Cu ALD process. Focusing on two common Cu ALD precursors, Cu(dmap)2 and Cu(acac)2, we studied the precursor adsorption on Cu surfaces by means of van der Waals (vdW) inclusive DFT methods. We found that the adsorption energies and adsorption geometries are dependent on the adsorption sites and on the method used to include vdW in the DFT calculation. Both precursor molecules are partially decomposed and the Cu cations are partially reduced in their chemisorbed structure. It is found that clean cleavage of the ligand−metal bond is one of the requirements for selecting precursors for ALD of metals. 2 Bonding between surface and an atom in the ligand which is not coordinated with the Cu may result in impurities in the thin film. To have insight into the reaction mechanism of a full ALD cycle of Cu ALD, we proposed reaction pathways based on activation energies and reaction energies for a range of surface reactions between Cu(dmap)2 and Et2Zn. The butane formation and desorption steps are found to be extremely exothermic, explaining the ALD reaction scheme of original experimental work. Endothermic ligand diffusion and re-ordering steps may result in residual dmap ligands blocking surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and incorporated as an impurity. This may lead to very slow growth rate, as was the case in the experimental work. By investigating the reduction of CuO to metallic Cu, we elucidated the role of the reducing agent in indirect ALD of Cu. We found that CuO bulk is protected from reduction during vacuum annealing by the CuO surface and that H2 is required in order to reduce that surface, which shows that the strength of reducing agent is important to obtain fully reduced metal thin films during indirect ALD processes. Overall, in this thesis, we studied the surface chemistries and reaction mechanisms of Cu ALD processes and the nucleation of Cu to form a thin film.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new strategy, “state-by-state transient screening”, for kinetic characterization of states of a multicomponent catalyst as applied to TAP pulse-response experiments. The key idea is to perform an insignificant chemical perturbation of the catalytic system so that the known essential characteristics of the catalyst (e.g. oxidation degree) do not change during the experiment. Two types of catalytic substances can be distinguished: catalyst state substances, which determine the catalyst state, and catalyst dynamic substances, which are created by the perturbation. The general methodological and theoretical framework for multi-pulse TAP experiments is developed, and the general model for a one-pulse TAP experiment is solved. The primary kinetic characteristics, basic kinetic coefficients, are extracted from diffusion–reaction data and calculated as functions of experimentally measured exit-flow moments without assumptions regarding the detailed kinetic mechanism. The new strategy presented in this paper provides essential information, which can be a basis for developing a detailed reaction mechanism. The theoretical results are illustrated using furan oxidation over a VPO catalyst.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ab initio simulations of a single molecule of HCl in liquid dimethyl imidazolium chloride [dmim][Cl] show that the acidic proton exists as a symmetric, linear ClHCl- species. Details of the solvation structure around this molecule are given. The proton-transfer process was investigated by applying a force along the antisymmetric stretch coordinate until the molecule broke. Changes in the free energy and local solvation structure during this process were investigated. In the reaction mechanism identified, a free chloride approaches the proton from the side. As the original ClHCl- distorts and the incoming chloride forms a new bond to the proton, one of the original chlorine atoms is expelled and a new linear molecule is formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research is progressing fast in the field of the hydrogen assisted hydrocarbon selective catalytic reduction (HC-SCR) over Ag-based catalysts: this paper is a review of the work to date in this area. The addition of hydrogen to the HC-SCR reaction feed over Ag/Al2O3 results in a remarkable improvement in NO (x) conversion using a variety of different hydrocarbon feeds. There is some debate concerning the role that hydrogen has to play in the reaction mechanism and its effect on the form of Ag present during the reaction. Many of the studies use in situ UV-Vis spectroscopy to monitor the form of Ag in the catalyst and appear to indicate that the addition of hydrogen promotes the formation of small Ag clusters which are highly reactive for NO (x) conversion. However, some authors have expressed concern about the use of this technique for these materials and further work is required to address these issues before this technique can be used to give an accurate assessment of the state of Ag during the SCR reaction. A study using in situ EXAFS to probe the H-2 assisted octane-SCR reaction has shown that small Ag particles (containing on average 3 silver atoms) are formed during the SCR reaction but that the addition of H-2 to the feed does not result in any further change in the Ag particle size. This points to the direct involvement of H-2 in the reaction mechanism. Clearly the addition of hydrogen results in a large increase in the number and variety of adsorbed species on the surface of the catalyst during the reaction. Some authors have suggested that conversion of cyanide to isocyanate is the rate-determining step and that hydrogen promotes this conversion. Others have suggested that hydrogen reduces nitrates to more reactive nitrite species which can then activate the hydrocarbon; activation of the hydrocarbon to form acetates has been proposed as the key step. It is probable that all these promotional effects can take place and that it very much depends on the reaction temperature and feed conditions as to which one is most important.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reactivity of electrogenerated bromine with cyclohexene has been studied on a platinum microelectrode by linear sweep and cyclic voltammetry in both the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and the conventional aprotic solvent, acetonitrile. Variation in the voltammetric response was observed in the two solvents, indicating that the bromination reaction proceeded via separate mechanisms. To identify the different products, electrolysis was conducted on the preparative scale and NMR spectroscopy confirmed that while bromination of the organic substrate in the ionic liquid yields trans-1,2-dibromocyclohexane, in acetonitrile, trans-1-(N-acetylamino)-2-bromocyclohexane is instead obtained as the major product. The reaction mechanism for bromination in acetonitrile has been modeled using digital simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water, one of the most popular species in our planet, can play a catalytic role in many reactions, including reactions in heterogeneous catalysis. In a recent experimental work, Bergeld, Kasemo, and Chakarov demonstrated that water is able to promote CO oxidation under low temperatures (similar to200 K). In this study, we choose CO oxidation on Pt(111) in the presence of water as a model system to address the catalytic role of water for surface reactions in general using density functional theory. Many elementary steps possibly involved in the CO oxidation on Pt(111) at low temperatures have been investigated. We find the following. First, in the presence of water, the CO oxidation barrier is reduced to 0.33 eV (without water the barrier is 0.80 eV). This barrier reduction is mainly due to the H-bonding between the H in the H2O and the O at the transition state (TS), which stabilizes the TS. Second, CO can readily react with OH with a barrier of 0.44 eV, while COOH dissociation to produce CO2 is not easy (the barrier is 1.02 eV). Third, in the H2O+OH mixed phase, CO can be easily converted into CO2. It occurs through two steps: CO reacts with OH, forming COOH; and COOH transfers the H to a nearby H2O and, at the same time, an H in the H2O transfers to a OH, leading to CO2 formation. The reaction barrier of this process is 0.60 eV under CO coverage of 1/6 ML and 0.33 eV under CO coverage of 1/3 ML. The mechanism of CO oxidation at low temperatures is discussed. On the basis of our calculations, we propose that the water promotion effect can in general be divided into two classes: (i) By H-bonding between the H of H2O and an electron negative species such as the O in the reaction of CO+O+H2O-->CO2+H2O, H2O can stabilize the TS of the reaction and hence reduce the barrier. (ii) H2O first dissociates into H and OH and then OH or H participates directly in the reaction to induce new reaction mechanism with more favorable routes, in which OH or H can act as an intermediate. (C) 2003 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Voltammetry is reported for chlorine, Cl-2, dissolved in various room temperature ionic liquids using platinum microdisk electrodes. A single reductive voltammetric wave is seen and attributed to the two-electron reduction of chlorine to chloride. Studies of the effect of voltage scan rate reveal uniquely unusual behavior in which the magnitude of the currents decrease with increasing scan rates. A model for this is proposed and shown to indicate the presence of strongly adsorbed species in the electrode reaction mechanism, most likely chlorine atoms, Cl*((ads)).