973 resultados para Raw materials for ceramics
Resumo:
The dielectric porcelain is usually obtained by mixing various raw materials proportions and is used in the production of electronic equipment for various applications, from capacitors of high and low Power to insulators for low, medium, high and extra high voltage, which are used in distribution lines and transmission of electricity.This work was directed to the s tudy of technological properties of technic porcelain, made from raw materials extracted from pegmatites found in the regions of Seridó and the Alto Oeste of Rio Grande do Norte, which are made of kaolin, quartz and feldspar, abundant and high quality in these regions. The technic ceramics were obtained by mixing in appropriate levels, kaolin, feldspar, quartz and clay, the last item from a pottery in the city of Sao Gonçalo do Amarante, Rio Grande do Norte. During the development the following characterizations correlated to raw materials were made: laser particle sizing, x-ray diffraction, DTA and TG. The compositions studied were formed by uniaxial pressing at a pressure of 50 MPa and sintered at temperatures ranging from 1150 to 1350ºC and levels (times) of sintering between 30, 60, 90 and 120 minutes. The characterization of the samples were taken from the analysis of weight loss, linear shrinkage, porosity, stoneware curve, bulk density, flexural strength of three points, SEM and X-ray diffraction, TMA, Dielectric and cross Resistivity. The studied materials can be employed in producing the objects used in electrical engineering such as: insulators for low, medium and high-voltage electrical systems, command devices, bushing insulation for transformers, power capacitors, spark plugs, receptacles for fluorescent and incandescent light bulbs and others
Resumo:
This research presents an overview of the addition steelwork dust of ceramic shingles in order to contribute to the utilization use of such residue. The ceramic industry perspective in the Brazilian State of Piauí is quite promising. Unlike other productive sectors, the ceramic industry uses basically natural raw materials. Its final products are, in short, the result of transforming clay compounds. These raw materials are composed primarily of aluminum oxide, silicon, iron, sodium, magnesium, end calcium, among others. It was verified that steelwork dust is composed primarily of these same oxides, so that its incorporation in to structural ceramics is a very reasonable idea. Both clay and steelwork powder were characterized by AG, XRF, XRD, TGA and DTA. In addition, steelwork dust samples containing (0%, 5%, 10%, 15%, 20% and 25%) were extruded and burned at 800°C, 850°C, 900°C and 950°C. Then t echnological tests of linear shrinkage, water uptake, apparent porosity, apparent density and flexural strengthwere carried at. The results showed the possibility of using steelwork powder in ceramic shingles until 15% significant improvement in physical and mechanical properties. This behavior shows the possibility of burning at temperatures lower than 850ºC, thus promoting a product final cost reduction
Resumo:
In the State Rio Grande do Norte, Brazil, the most significant deposits of minerals in the production of granite and pegmatite are Seridó region. Municipalities of Parelhas and Equador are the main responsible for the production of feldspar, quartz, kaolin and granite. The ceramic industries are always in search of competitiveness by investing in new products or improving existing techniques. The stoneware is a type of pottery that stands in the market because it presents technical and aesthetic characteristics superior to other existing products. Characteristics of the raw materials initially obtained with chemical analysis and mineralogical analysis are crucial in getting a product that satisfies the conditions in a manufacturing process and is, in principle, directly related to the firing cycle. This research aimed at developing new formulations for the mass production of ceramic stoneware. The raw materials initially characterized were feldspar, quartz, kaolin and granite. As part of the research was developed at the University of Aveiro, in Portugal, we used two clays used in the production of Portuguese ceramics. The raw material Brazilian and Portuguese and the final product, both in Portugal and Brazil, were analyzed for X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis, thermal analysis and analysis of scanning electron microscopy (MEV). The specimens prepared at the University of Aveiro (DECV) were sintered at 10000C and 12000C and the specimens prepared in UFRN were sintered at 10000C, 10500C, 11000C, 11500C, 12000C, 12500C and 13000C, but the best results and demonstrating the presence of the mineral mullite were at temperatures of 12000C, 12500C and 13000C. The results showed that the granite waste used may be considered raw material of excellent quality for use in the ceramic industry and coating floors and more accurately by the industry of stoneware. Physical and mechanical tests conducted on samples of the formulations F01 and F02 developed in UFRN showed a water absorption and mechanical strength suitable for the stoneware
Resumo:
Over recent years the structural ceramics industry in Brazil has found a very favorable market for growth. However, difficulties related to productivity and product quality are partially inhibiting this possible growth. An alternative for trying to solve these problems and, thus, provide the pottery industry the feasibility of full development, is the substitution of firewood used in the burning process by natural gas. In order to contribute to this process of technological innovation, this paper studies the effect of co-use of ceramic phyllite and kaolin waste on the properties of a clay matrix, verifying the possible benefits that these raw materials can give to the final product, as well as the possibility of such materials to reduce the heat load necessary to obtain products with equal or superior quality. The study was divided into two steps: characterization of materials and study of formulations. Two clays, a phyllite and a residue of kaolin were characterized by the following techniques: laser granulometry, plasticity index by Atterberg limits, X-ray fluorescence, X-ray diffraction, mineralogical composition by Rietveld, thermogravimetric and differential thermal analysis. To study the formulations, specifically for evaluation of technological properties of the parts, was performed an experimental model that combined planning involving a mixture of three components (standard mass x phyllite x kaolin waste) and a 23 factorial design with central point associated with thermal processing parameters. The experiment was performed with restricted strip-plot randomization. In total, 13 compositional points were investigated within the following constraints: phyllite ≤ 20% by weight, kaolin waste ≤ 40% by weight, and standard mass ≥ 60% by weight. The thermal parameters were used at the following levels: 750 and 950 °C to the firing temperature, 5 and 15 °C/min at the heating rate, 15 and 45min to the baseline. The results showed that the introduction of phyllite and/or kaolin waste in ceramic body produced a number of benefits in properties of the final product, such as: decreased absorption of water, apparent porosity and linear retraction at burn; besides the increase in apparent specific mass and mechanical properties of parts. The best results were obtained in the compositional points where the sum of the levels of kaolin waste and phyllite was maximal (40% by weight), as well as conditions which were used in firing temperatures of 950 °C. Regarding the prospect of savings in heat energy required to form the desired microstructure, the phyllite and the residue of kaolin, for having small particle sizes and constitutions mineralogical phases with the presence of fluxes, contributed to the optimization of the firing cycle.
Resumo:
Extractivism mineral is considered an activity highly degrading, due to the large volume of material that he moves in the form of ore and residues. The vast majority of mining companies do not show any technology or economically viable application that will allow the recycling of mineral residue, these being launched in areas receiving located the "open skies" degrade the environment. In Rio Grande do Norte to the production of ceramic red restricts their activities to the production of products such as: solid bricks, ceramic blocks, tiles, among others. Seeking to unite experiences and technical information that favor sustainable development, with important benefits to the construction sector and civil society in general, the present work studies the incorporation of the residue of scheelite in ceramic matrix kaolinitic, coming from the municipality of Boa Saúde - RN, in percentage of 5 %, 10 %, 20 %, 30% 40% and 50 %, by evaluating its microstructure, physical properties and formulation. The raw materials were characterized through the trials of X ray fluorescence, Diffraction of X rays, Differential Thermal Analysis and Termogravimetric Analysis. The samples were formed and fired at temperatures of 850o, 900o, 1000o, 1050o, 1100o, 1150o and 1200 oC, with isotherm of 1 hour and heating rate of 10 oC/min. Assays were performed technological of loss to fire, Water Absorption, Apparent Porosity, Apparent Density, Mass Loss in Fire and Bending Resistance; in addition to the Scanning Electron Microscopy, analyzing their physical and mechanical properties. The use of residue of scheelite in ceramic mass kaolinitic provided a final product with technological properties that meet the technical standards for the production of bricks and roofing tiles, with the percentage of 20% of waste that showed the best results
Resumo:
Nowadays, industries from all sectors have great concerns over the disposition of the residues generated along the productive process. This is not different in the mineral sector, as this generates great volumes of residues. It was verified that the kaolin improvement industry generates great volumes of residue basically constituted of kaolinite, muscovite mica and quartz, which are basic constitution elements to formularisations of ceramics masses to the production of covering of stoneware tiles type. This happens because the methodology applied to the improvement process is still very rudimentary, what causes a very low yield, only ¼ from all the material volume that enters the improvement process, in the end, is marketable. The disposal of this residue, in a general way, causes a very big negative environmental impact, what has justified the researches efforts aiming to find a rational solution to this problem. In this way, the intention of this present work is the utilization of this residue in the manufacture of products to high quality ceramics covering, stoneware tiles in an industrial scale. For this purpose, the influence of the addition of the residue to a standard ceramics mass used by a ceramics sector company, already established in the market, with the intention of verifying the possibility of use of this residue as the mass complementary raw material and even the possible partial or total substitution of one of the components of the mass for the raw material in evidence will be studied. To the accomplishment of this work, the kaolin improvement residue generated by an industry of exploitation and improvement of kaolin, located in the region of Equador-RN, in the levels 1,2,4,8, 16 and 32% will be added to the standard mass already used for the production of stoneware tiles. The raw materials used, kaolin residue and the standard mass, were characterized through DRX, FRX, DTA, TGA and dilatometry. After the sintering of the bodies of test, tests of water absorption, apparent porosity, post burning linear retraction, apparent specific mass and flexural strength (3 point bending) were realized to determinate the technological properties of these materials. The results show the studied residue can be considered raw material of great potential to the industry of floor and ceramics covering of the stoneware tiles type
Resumo:
Nowadays, one of the most important areas of interest in archeology is the characterization of the submersed cultural heritage. Mediterranean Sea is rich in archaeological findings due to storms, accidents and naval battles since prehistoric times. Chemical analysis of submerged materials is an extremely valuable source of information on the origin and precedence of the wrecks, and also the raw materials employed during the manufacturing of the objects found in these sites. Nevertheless, sometimes it is not possible to extract the archaeological material from the marine environment due to size of the sample, the legislation or preservation purposes. In these cases, the in-situ analysis turns into the only alternative for obtaining information. In spite of this demand, no analytical techniques are available for the in-situ chemical characterization of underwater materials. The versatility of laser-induced breakdown spectroscopy (LIBS) has been successfully tested in oceanography 1. Advantages such as rapid and in situ analysis with no sample preparation make LIBS a suitable alternative for field measurements. To further exploit the inherent advantages of the technology, a mobile fiber-based LIBS platform capable of performing remote measurements up to 50 meters range has been designed for the recognition and identification of artworks in underwater archaeological shipwrecks. The LIBS prototype featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS) 2. The use of multi-pulse excitation allowed an increased laser beam energy (up to 95 mJ) transmitted through the optical fiber. This excitation mode results in an improved performance of the equipment in terms of extended range of analysis (to a depth of 50 m) and a broader variety of samples to be analyzed (i.e., rocks, marble, ceramics and concrete). In the present work, the design and construction considerations of the instrument are reported and its performance is discussed on the basis of the spectral response, the remote irradiance achieved upon the range of analysis and its influence on plasma properties, as well as the effect of the laser pulse duration and purge gas to the LIBS signal. Also, to check the reliability and reproducibility of the instrument for field analysis several robustness tests were performed outside the lab. Finally, the capability of this instrument was successfully demonstrated in an underwater archaeological shipwreck (San Pedro de Alcántara, Malaga).
Resumo:
The micro-chemical/mineralogical composition of samples of grey-paste imitations of Italic Late Republican black gloss tableware displaying a particular kind of lozenge-shaped decoration (“Losanga pottery”) from Portuguese and Spanish archaeological sites in SW Iberia has been analysed by BSEM + EDS, μXRD, Powder XRD, Portable XRF and μRaman spectroscopy. “Losanga” decorated ceramics have been found throughout the Western Mediterranean. Most of the sherds display a green-brown to greyish-black engobe at the surface resembling the gloss found in Attic pottery from Classical Greece. The overall chemical, mineralogical and fossiliferous homogeneities of the ceramic paste show common features (low K-feldspar/plagioclase ratio, high Ca content, abundance of well-preserved fragments of foraminifera microfossils) that indicate low firing conditions in the kiln ranging from 650 to 900 °C. With respect to the ceramic body, analytical results confirm an enrichment in the surface gloss layer of iron, potassium and aluminium and a depletion in silicon and calcium; the very fine grain size of the surface coating suggests elutriation of iron oxide-rich clays as confirmed by the presence of magnetite, maghemite and goethite in μ-XRD scan. Chemical and mineralogical data also suggest that the firing process was performed in a 600–850 °C temperature range, adopting the well-known technique of alternating oxidizing and reducing firing conditions largely employed at the time. The analytical results, while compatible with the archaeological hypothesis of a common provenance of the raw materials for pottery production from the Guadalquivir valley workshops cannot be considered conclusive due to the similarity in the geological substrate in the two SW Iberian regions under study.
Resumo:
The thesis examines the technical aspects of unglazed molded ceramics from Mértola, in the context of Islamic archaeology of the Iberian Peninsula (Almohad period, end of 12th and the beginning of 13th century). Ceramics of the time period under discussion (12th – 13th century) are understudied, including in what concern to shaping and firing of ceramic vessels, the origin of raw materials used in ceramics and glazes, and decoration methods such as slip painting and/or colored glazes. Moreover, the use of archaeometry tools is rare. Along with providing a general picture of molded ceramic production in Mértola, this work provides a new dimension to the discipline of Islamic ceramic studies by the analytical tool used and demonstrating the importance of archaeological ceramics of the western peripheries to the understanding the production of ceramics and the transmission of knowledge and cultural traditions within the Islamic caliphate. The chemical and mineralogical characterization of 12th/13th century Almohad unglazed molded ware from Mértola was accomplished through multi – analytical approach combining SEM, Powder/uXRD and LA-ICP-MS methods. In this paper unglazed and glazed samples were analyzed but the attention was given to unglazed specimens, while the glazed samples were used for the comparison with the previous group in order to determine possible similarities or dissimilarities, thus providing enough data to discuss about technical aspects and potential provenance; Resumo: A tese debruça-se sobre os aspetos técnicos de cerâmica de molde não-vidrada de Mértola, no contexto da arqueologia islâmica da Península Ibérica (período Almóada, final de XII e início do século XIII). A cerâmica do período em discussão (séculos XII-XIII) é pouco estudada inclusive no que concerne ao fabrico e à cozedura, à de fonte de matérias-primas, na pasta ou nos esmaltes e aos métodos de decoração, como pintura, presença de engobes ou esmaltes. Além disso, o uso de ferramentas de Arqueometria é raro. Para fornecer uma visão geral da produção de cerâmica moldada em Mértola, este trabalho oferece uma nova dimensão para a disciplina de cerâmica islâmicas pelas ferramentas analíticas utilizadas. Demonstrando a importância da cerâmica arqueológica da periferia ocidental para a compreensão da produção cerâmica e a transmissão de conhecimentos e tradições culturais no califado islâmico. A caracterização mineralógica e química das cerâmicas de molde e não-vidrada, Almóada, dos séculos XII-XIII de Mértola foi realizada através de uma abordagem multi-analítica que combina métodos de SEM-EDS, uXRD e LA-ICP-MS. Neste trabalho, as cerâmicas vidradas e não-vidradas foram analisadas conjuntamente, dando mais atenção aos espécimes não vidrados. As amostras de cerâmicas vidradas foram utilizados para a comparação com o grupo anterior, a fim de determinar as possíveis semelhanças ou diferenças, proporcionando, assim, dados suficientes para discutir os aspetos técnicos e o potencial de proveniência das cerâmicas não vidradas
Resumo:
N-nitrosamines are carcinogenic compounds that have been found during the last three decades in a variety of consumer products, including cosmetic and personal care products, and their raw materials. These compounds are formed from amine precursors and nitrosating agents present in the formulations. This paper reviews the formation and occurrence of N-nitrosamines in cosmetic products, as well as presents considerations about analytical, toxicological and regulatory aspects.
Resumo:
Micropartículas produzidas a partir de polímeros sintéticos têm sido amplamente utilizadas na área farmacêutica para encapsulação de princípios ativos. Essas micropartículas apresentam as vantagens de proteção do princípio ativo, mucoadesão e gastrorresistência, melhor biodisponibilidade e maior adesão do paciente ao tratamento. Além disso, utiliza menores quantidade de princípio ativo para obtenção do efeito terapêutico proporcionando diminuição dos efeitos adversos locais, sistêmicos e menor toxidade. Os polímeros sintéticos empregados na produção das micropartículas são classificados biodegradáveis ou não biodegradáveis, sendo os biodegradáveis mais utilizados por não necessitam ser removidos cirurgicamente após o término de sua ação. A produção das micropartículas poliméricas sintéticas para encapsulação tanto de ativos hidrofílicos quanto hidrofóbicos pode ser emulsificação por extração e/ou evaporação do solvente; coacervação; métodos mecânicos e estão revisados neste artigo evidenciando as vantagens, desvantagens e viabilidade de cada metodologia. A escolha da metodologia e do polímero sintético a serem empregados na produção desse sistema dependem da aplicação terapêutica requerida, bem como a simplicidade, reprodutibilidade e factibilidade do aumento de escala da produção.
Resumo:
The thermal decomposition of hydroxyl-terminated polybutadiene (HTPB)/ammonium nitrate (AN) based propellants, so called smokeless formulations, and raw materials were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The thermoanalytical profile of different components and of propellant were evaluated and the Arrhenius parameters for the thermal decomposition of the propellant sample were determined by the Ozawa method. The kinetic parameters of the thermal decomposition of propellant samples were determined by DSC measurements. The values obtained for activation energy (Ea) and pre-exponential factor were 163 kJ mol-1 and 1.94x10(6) min-1.
Resumo:
Expanded products have been developed by extrusion of non-conventional highly nutritious raw materials such as amaranth and chickpea blended with bovine lung. As sensory acceptance of these snacks is restricted, this study aimed at improving their texture, through the addition of monosodium glutamate (MSG) and disodium inosinate (IMP) flavor enhancers to the feeding material, or to the flavor added after the extrusion. Sensory and mechanical analyses showed that both enhancers affected texture, assessed by sensory and instrumental methods. Addition of IMP together with MSG to the chickpea-based snacks presented the best results. This beneficial effect was not observed in the amaranth-based snack, suggesting that IMP and MSG can favorably impact texture of extruded products depending on the amount and type of protein present
Resumo:
Tibolone is used for hormone reposition of postmenopause women and isotibolone is considered the major degradation product of tibolone. Isotibolone can also be present in tibolone API raw materials due to some inadequate synthesis. Its presence is then necessary to be identified and quantified in the quality control of both API and drug products. In this work we present the indexing of an isotibolone X-ray diffraction pattern measured with synchrotron light (lambda=1.2407 angstrom) in the transmission mode. The characterization of the isotibolone sample by IR spectroscopy, elemental analysis, and thermal analysis are also presented. The isotibolone crystallographic data are a=6.8066 angstrom, b=20.7350 angstrom, c=6.4489 angstrom, beta=76.428 degrees, V=884.75 angstrom(3), and space group P2(1), rho(o)= 1.187 g cm(-3), Z=2. (C) 2009 International Centre for Diffraction Data. [DOI: 10.1154/1.3257612]
Resumo:
The use of the fish silage as an ingredient in feed for aquatic organisms is an alternative to solve sanitary and environmental problems caused by the lack of an adequate destination for the residues generated by the fishing industry. It would also lower the costs with feed, and consequently the fish production costs, since the expenses with the feed account for approximately 60% of the total cost. The objective of this study was to evaluate the fatty acid composition of the acid silage (AS), biological silage (BS) and enzymatic silage (ES) produced from discardings of the culture and from processing residues of the Nile tilapia (Oreochromis niloticus). The values found for lipids (dry matter basis) were: 12.45; 12.25 and 12.17 g 100 g(-1) for BS, AS, and ES, respectively. The fatty acids present in the lipid fraction of the silages are predominantly unsaturated. Oleic acid was present in larger amounts (30.49, 28.60 and 30.60 g 100 g(-1) of lipids for BS, AS and ES, respectively). Among saturated fatty acids, palmitic and stearic acids were present in larger amounts. Only traces of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids were found. The silages produced from discardings of the culture and processing residues of the Nile tilapia are not a good source of EPA and DHA for fish feeds.