981 resultados para Railroad accidents.
Resumo:
Natural hazards affecting industrial installations could directly or indirectly cause an accident or series of accidents with serious consequences for the environment and for human health. Accidents initiated by a natural hazard or disaster which result in the release of hazardous materials are commonly referred to as Natech (Natural Hazard Triggering a Technological Disaster) accidents. The conditions brought about by these kinds of events are particularly problematic, the presence of the natural event increases the probability of exposition and causes consequences more serious than standard technological accidents. Despite a growing body of research and more stringent regulations for the design and operation of industrial activities, Natech accidents remain a threat. This is partly due to the absence of data and dedicated risk-assessment methodologies and tools. Even the Seveso Directives for the control of risks due to major accident hazards do not include any specific impositions regarding the management of Natech risks in the process industries. Among the few available tools there is the European Standard EN 62305, which addresses generic industrial sites, requiring to take into account the possibility of lightning and to select the appropriate protection measures. Since it is intended for generic industrial installations, this tool set the requirements for the design, the construction and the modification of structures, and is thus mainly oriented towards conventional civil building. A first purpose of this project is to study the effects and the consequences on industrial sites of lightning, which is the most common adverse natural phenomenon in Europe. Lightning is the cause of several industrial accidents initiated by natural causes. The industrial sectors most susceptible to accidents triggered by lightning is the petrochemical one, due to the presence of atmospheric tanks (especially floating roof tanks) containing flammable vapors which could be easily ignited by a lightning strike or by lightning secondary effects (as electrostatic and electromagnetic pulses or ground currents). A second purpose of this work is to implement the procedure proposed by the European Standard on a specific kind of industrial plant, i.e. on a chemical factory, in order to highlight the critical aspects of this implementation. A case-study plant handling flammable liquids was selected. The application of the European Standard allowed to estimate the incidence of lightning activity on the total value of the default release frequency suggested by guidelines for atmospheric storage tanks. Though it has become evident that the European Standard does not introduce any parameters explicitly pointing out the amount of dangerous substances which could be ignited or released. Furthermore the parameters that are proposed to describe the characteristics of the structures potentially subjected to lightning strikes are insufficient to take into account the specific features of different chemical equipment commonly present in chemical plants.
Resumo:
The so called cascading events, which lead to high-impact low-frequency scenarios are rising concern worldwide. A chain of events result in a major industrial accident with dreadful (and often unpredicted) consequences. Cascading events can be the result of the realization of an external threat, like a terrorist attack a natural disaster or of “domino effect”. During domino events the escalation of a primary accident is driven by the propagation of the primary event to nearby units, causing an overall increment of the accident severity and an increment of the risk associated to an industrial installation. Also natural disasters, like intense flooding, hurricanes, earthquake and lightning are found capable to enhance the risk of an industrial area, triggering loss of containment of hazardous materials and in major accidents. The scientific community usually refers to those accidents as “NaTechs”: natural events triggering industrial accidents. In this document, a state of the art of available approaches to the modelling, assessment, prevention and management of domino and NaTech events is described. On the other hand, the relevant work carried out during past studies still needs to be consolidated and completed, in order to be applicable in a real industrial framework. New methodologies, developed during my research activity, aimed at the quantitative assessment of domino and NaTech accidents are presented. The tools and methods provided within this very study had the aim to assist the progress toward a consolidated and universal methodology for the assessment and prevention of cascading events, contributing to enhance safety and sustainability of the chemical and process industry.
Resumo:
Road traffic accidents (RTA) are an important cause of premature death. We examined socio-demographic and geographical determinants of RTA mortality in Switzerland by linking 2000 census data to RTA mortality records 2000-2005 (ICD-10 codes V00-V99). Data from 5.5 million residents aged 18-94 years, 1744 study areas, and 1620 RTA deaths were analyzed, including 978 deaths (60.4%) in motor vehicle occupants, 254 (15.7%) in motorcyclists, 107 (6.6%) in cyclists, and 259 (16.0%) in pedestrians. Weibull survival models and Bayesian methods were used to calculate hazard ratios (HR), and standardized mortality ratios (SMR) across study areas. Adjusted HR comparing women with men ranged from 0.04 (95% CI 0.02-0.07) in motorcyclists to 0.43 (95% CI 0.32-0.56) in pedestrians. There was a u-shaped relationship with age in motor vehicle occupants and motorcyclists. In cyclists and pedestrians, mortality increased after age 55 years. Mortality was higher in individuals with primary education (HR 1.53; 95% CI 1.29-1.81), and higher in single (HR 1.24; 95% CI 1.05-1.46), widowed (HR 1.31; 95% CI 1.05-1.65) and divorced individuals (HR 1.62; 95% CI 1.33-1.97), compared to persons with tertiary education or married persons. The association with education was particularly strong for pedestrians (HR 1.87; 95% CI 1.20-2.91). RTA mortality increased with decreasing population density of study areas for motor vehicle occupants (test for trend p<0.0001) and motorcyclists (p=0.0021) but not for cyclists (p=0.39) or pedestrians (p=0.29). SMR standardized for socio-demographic and geographical variables ranged from 82 to 190. Prevention efforts should aim to reduce inequities across socio-demographic and educational groups, and across geographical areas, with interventions targeted at high-risk groups and areas, and different traffic users, including pedestrians.
Resumo:
To investigate the prevalence and characteristics of cerebrovascular accidents (CVA) in a large population of adults with congenital heart disease (CHD).
Resumo:
Cerebrovascular accidents (CVA) are considered among the most serious adverse events after transcatheter aortic valve implantation (TAVI). The objective of the present study was to evaluate the frequency and timing of CVA after TAVI and to investigate the impact on clinical outcomes within 30 days of the procedure.
Resumo:
BACKGROUND: Mortality and morbidity are particularly high in the building industry. The annual rate of non-fatal occupational accidents in Switzerland is 1,133 per 100,000 inhabitants. METHODS: Retrospective analysis of the electronic database of a university emergency centre. Between 2001 and 2011, 782 occupational accidents to construction workers were recorded and analysed using specific demographic and medical keywords. RESULTS: Most patients were aged 30-39 (30.4%). 66.4% of the injured workers were foreigners. This is almost twice as high as the overall proportion of foreigners in Switzerland or in the Swiss labour market. 16% of the Swiss construction workers and 8% of the foreign construction workers suffered a severe injury with ISS >15. There was a trend for workers aged 60 and above to suffer an accident with a high ISS (p = 0.089). CONCLUSIONS: As in other European countries, most patients were in their thirties. Older construction workers suffered fewer injuries, although these tended to be more severe. The injuries were evenly distributed through the working days of the week. A special effort should be made that current health and safety measures are understood and applied by foreign and older construction workers.
Resumo:
Today the use of concrete ties is on the rise in North America as they become an economically competitive alternative to the historical industry standard wood ties, while providing performance which exceeds its competition in terms of durability and capacity. Similarly, in response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity while making it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will in turn affect the performance requirements of the track. Due to the increased loads heavy haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie design through an investigation of prestressing quantity, configuration, stress levels and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. However, researchers also found that current design specifications and procedures do not include consideration of tie behavior beyond the current tie capacity limit of cracking to the first layer of prestressing. In addition to limiting analysis to the cracking limit, failure mechanisms such as shear in deep beams at the rail seat or pullout failure of the prestressing due to lack of development length were absent from specified design procedures, but discussed in this project.
Resumo:
The Michigan Department of Transportation is evaluating upgrading their portion of the Wolverine Line between Chicago and Detroit to accommodate high speed rail. This will entail upgrading the track to allow trains to run at speeds in excess of 110 miles per hour (mph). An important component of this upgrade will be to assess the requirement for ballast material for high speed rail. In the event that the existing ballast materials do not meet specifications for higher speed train, additional ballast will be required. The purpose of this study, therefore, is to investigate the current MDOT railroad ballast quality specifications and compare them to both the national and international specifications for use on high speed rail lines. The study found that while MDOT has quality specifications for railroad ballast it does not have any for high speed rail. In addition, the American Railway Engineering and Maintenance-of-Way Association (AREMA), while also having specifications for railroad ballast, does not have specific specifications for high speed rail lines. The AREMA aggregate specifications for ballast include the following tests: (1) LA Abrasion, (2) Percent Moisture Absorption, (3) Flat and Elongated Particles, (4) Sulfate Soundness test. Internationally, some countries do require a highly standard for high speed rail such as the Los Angeles (LA) Abrasion test, which is uses a higher standard performance and the Micro Duval test, which is used to determine the maximum speed that a high speed can operate at. Since there are no existing MDOT ballast specification for high speed rail, it is assumed that aggregate ballast specifications for the Wolverine Line will use the higher international specifications. The Wolverine line, however, is located in southern Michigan is a region of sedimentary rocks which generally do not meet the existing MDOT ballast specifications. The investigation found that there were only 12 quarries in the Michigan that meet the MDOT specification. Of these 12 quarries, six were igneous or metamorphic rock quarries, while six were carbonate quarries. Of the six carbonate quarries four were locate in the Lower Peninsula and two in the Upper Peninsula. Two of the carbonate quarries were located in near proximity to the Wolverine Line, while the remaining quarries were at a significant haulage distance. In either case, the cost of haulage becomes an important consideration. In this regard, four of the quarries were located with lake terminals allowing water transportation to down state ports. The Upper Peninsula also has a significant amount of metal based mining in both igneous and metamorphic rock that generate significant amount of waste rock that could be used as a ballast material. The main drawback, however, is the distance to the Wolverine rail line. One potential source is the Cliffs Natural Resources that operates two large surface mines in the Marquette area with rail and water transportation to both Lake Superior and Lake Michigan. Both mines mine rock with a very high compressive strength far in excess of most ballast materials used in the United States and would make an excellent ballast materials. Discussions with Cliffs, however, indicated that due to environmental concerns that they would most likely not be interested in producing a ballast material. In the United States carbonate aggregates, while used for ballast, many times don't meet the ballast specifications in addition to the problem of particle degradation that can lead to fouling and cementation issues. Thus, many carbonate aggregate quarries in close proximity to railroads are not used. Since Michigan has a significant amount of carbonate quarries, the research also investigated using the dynamic properties of aggregate as a possible additional test for aggregate ballast quality. The dynamic strength of a material can be assessed using a split Hopkinson Pressure Bar (SHPB). The SHPB has been traditionally used to assess the dynamic properties of metal but over the past 20 years it is now being used to assess the dynamic properties of brittle materials such as ceramics and rock. In addition, the wear properties of metals have been related to their dynamic properties. Wear or breakdown of railroad ballast materials is one of the main problems with ballast material due to the dynamic loading generated by trains and which will be significantly higher for high speed rails. Previous research has indicated that the Port Inland quarry along Lake Michigan in the Southern Upper Peninsula has significant dynamic properties that might make it potentially useable as an aggregate for high speed rail. The dynamic strength testing conducted in this research indicate that the Port Inland limestone in fact has a dynamic strength close to igneous rocks and much higher than other carbonate rocks in the Great Lakes region. It is recommended that further research be conducted to investigate the Port Inland limestone as a high speed ballast material.
Resumo:
http://digitalcommons.mtu.edu/copper_range/1000/thumbnail.jpg
Resumo:
Wireless sensor network is an emerging research topic due to its vast and ever-growing applications. Wireless sensor networks are made up of small nodes whose main goal is to monitor, compute and transmit data. The nodes are basically made up of low powered microcontrollers, wireless transceiver chips, sensors to monitor their environment and a power source. The applications of wireless sensor networks range from basic household applications, such as health monitoring, appliance control and security to military application, such as intruder detection. The wide spread application of wireless sensor networks has brought to light many research issues such as battery efficiency, unreliable routing protocols due to node failures, localization issues and security vulnerabilities. This report will describe the hardware development of a fault tolerant routing protocol for railroad pedestrian warning system. The protocol implemented is a peer to peer multi-hop TDMA based protocol for nodes arranged in a linear zigzag chain arrangement. The basic working of the protocol was derived from Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN).