972 resultados para Radial basis functions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple model for the effective vibrational hamiltonian of the XH stretching vibrations in H2O, NH3 and CH4 is considered, based on a morse potential function for the bond stretches plus potential and kinetic energy coupling between pairs of bond oscillators. It is shown that this model can be set up as a matrix in local mode basis functions, or as a matrix in normal mode basis functions, leading to identical results. The energy levels obtained exhibit normal mode patterns at low vibrational excitation, and local mode patterns at high excitation. When the hamiltonian is set up in the normal mode basis it is shown that Darling-Dennison resonances must be included, and simple relations are found to exist between the xrs, gtt, and Krrss anharmonic constants (where the Darling-Dennison coefficients are denoted K) due to their contributions from morse anharmonicity in the bond stretches. The importance of the Darling-Dennison resonances is stressed. The relationship of the two alternative representations of this local mode/normal mode model are investigated, and the potential uses and limitations of the model are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vibrational structure of C---H stretching states in gas-phase cyclobutene was studied using FTIR spectroscopy in the range 700–9000 cm−1. The structure was modelled using two effective vibrational Hamiltonians, one for each type of C---H bond present, consisting of local mode basis functions subject to coupling with symmetrically equivalent bonds and to Fermi resonances with suitable low frequency vibrations. Best-fit model parameters were determined using least-squares routines and the model predictions are compared to the observed band positions and intensities. Some discussion is given of the relevance of the observed couplings to intramolecular vibrational redistribution (IVR) which results in the observation of statistical behaviour in cyclobutene isomerization induced by excitation of C---H stretching overtones in the visible region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Fourier-transform spectrum of CH3F from 2800 to 3100 cm−1, obtained by Guelachvili in Orsay at a resolution of about 0.003 cm−1, was analyzed. The effective Hamiltonian used contained all symmetry allowed interactions up to second order in the Amat-Nielsen classification, together with selected third-order terms, amongst the set of nine vibrational basis functions represented by the states ν1(A1), ν4(E), 2ν2(A1), ν2 + ν5(E), 2ν50(A1), and 2ν5±2(E). A number of strong Fermi and Coriolis resonances are involved. The vibrational Hamiltonian matrix was not factorized beyond the requirements of symmetry. A total of 59 molecular parameters were refined in a simultaneous least-squares analysis to over 1500 upper-state energy levels for J ≤ 20 with a standard deviation of 0.013 cm−1. Although the standard deviation remains an order of magnitude greater than the precision of the measurements, this work breaks new ground in the simultaneous analysis of interacting symmetric top vibrational levels, in terms of the number of interacting vibrational states and the number of parameters in the Hamiltonian.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the results of variational calculations of the rovibrational energy levels of HCN for J = 0, 1 and 2, where we reproduce all the ca. 100 observed vibrational states for all observed isotopic species, with energies up to 18000 cm$^{-1}$, to about $\pm $1 cm$^{-1}$, and the corresponding rotational constants to about $\pm $0.001 cm$^{-1}$. We use a hamiltonian expressed in internal coordinates r$_{1}$, r$_{2}$ and $\theta $, using the exact expression for the kinetic energy operator T obtained by direct transformation from the cartesian representation. The potential energy V is expressed as a polynomial expansion in the Morse coordinates y$_{i}$ for the bond stretches and the interbond angle $\theta $. The basis functions are built as products of appropriately scaled Morse functions in the bond-stretches and Legendre or associated Legendre polynomials of cos $\theta $ in the angle bend, and we evaluate matrix elements by Gauss quadrature. The hamiltonian matripx is factorized using the full rovibrational symmetry, and the basis is contracted to an optimized form; the dimensions of the final hamiltonian matrix vary from 240 $\times $ 240 to 1000 $\times $ 1000.We believe that our calculation is converged to better than 1 cm$^{-1}$ at 18 000 cm$^{-1}$. Our potential surface is expressed in terms of 31 parameters, about half of which have been refined by least squares to optimize the fit to the experimental data. The advantages and disadvantages and the future potential of calculations of this type are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The =CH2 AND =CD2 stretching vibrational overtones of H2C=CD2 have been studied up to V= 6 and V= 3, respectively. We report their interpretation in terms of a transition from normal to local modes, involving Fermi resonance with the C=C stretching and CH2 scissoring vibrations. We discuss the alternative representation of the vibrational Hamiltonian matrix in local mode and normal mode basis functions, and conclude that the normal mode basis offers greater flexibility in representing small anharmonic couplings with other modes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal structure of 4-phenyl-benzaldehyde reveals the presence of a dimer linked by the C=O and C( 9)-H groups of adjacent molecules. In the liquid phase, the presence of C-(HO)-O-... bonded forms is revealed by both vibrational and NMR spectroscopy. A Delta H value of - 8.2 +/- 0.5 kJ mol(-1) for the dimerisation equilibrium is established from the temperature-dependent intensities of the bands assigned to the carbonyl-stretching modes. The NMR data suggest the preferential engagement of the C(2,6)-H and C(10/12)/C(11)-H groups as hydrogen bond donors, instead of the C(9)-H group. While ab initio calculations for the isolated dimers are unable to corroborate these NMR results, the radial distribution functions obtained from molecular dynamics simulations show a preference for C(2,6)-H and C(10/12)/C(11)-(HO)-O-... contacts relative to the C(9)-(HO)-O-... ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers. that generalize well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the scattering of a time-harmonic acoustic incident plane wave by a sound soft convex curvilinear polygon with Lipschitz boundary. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the number of degrees of freedom required to achieve a prescribed level of accuracy grows at least linearly with respect to the frequency of the incident wave. Here we propose a novel Galerkin boundary element method with a hybrid approximation space, consisting of the products of plane wave basis functions with piecewise polynomials supported on several overlapping meshes; a uniform mesh on illuminated sides, and graded meshes refined towards the corners of the polygon on illuminated and shadow sides. Numerical experiments suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy need only grow logarithmically as the frequency of the incident wave increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper stability of one-step ahead predictive controllers based on non-linear models is established. It is shown that, under conditions which can be fulfilled by most industrial plants, the closed-loop system is robustly stable in the presence of plant uncertainties and input–output constraints. There is no requirement that the plant should be open-loop stable and the analysis is valid for general forms of non-linear system representation including the case out when the problem is constraint-free. The effectiveness of controllers designed according to the algorithm analyzed in this paper is demonstrated on a recognized benchmark problem and on a simulation of a continuous-stirred tank reactor (CSTR). In both examples a radial basis function neural network is employed as the non-linear system model.