975 resultados para RNA, Small Interfering


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims Duchenne muscular dystrophy (DMD), a degenerative pathology of skeletal muscle, also induces cardiac failure and arrhythmias due to a mutation leading to the lack of the protein dystrophin. In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The absence of dystrophin results in an elevated stress-induced Ca2+ influx due to the inadequate functioning of several proteins, such as stretch-activated channels (SACs). Our aim was to investigate whether transient receptor potential vanilloid channels type 2 (TRPV2) form subunits of the dysregulated SACs in cardiac dystrophy. Methods and results We defined the role of TRPV2 channels in the abnormal Ca2+ influx of cardiomyocytes isolated from dystrophic mdx mice, an established animal model for DMD. In dystrophic cells, western blotting showed that TRPV2 was two-fold overexpressed. While normally localized intracellularly, in myocytes from mdx mice TRPV2 channels were translocated to the sarcolemma and were prominent along the T-tubules, as indicated by immunocytochemistry. Membrane localization was confirmed by biotinylation assays. Furthermore, in mdx myocytes pharmacological modulators suggested an abnormal activity of TRPV2, which has a unique pharmacological profile among TRP channels. Confocal imaging showed that these compounds protected the cells from stress-induced abnormal Ca2+ signals. The involvement of TRPV2 in these signals was confirmed by specific pore-blocking antibodies and by small-interfering RNA ablation of TRPV2. Conclusion Together, these results establish the involvement of TRPV2 in a stretch-activated calcium influx pathway in dystrophic cardiomyopathy, contributing to the defective cellular Ca2+ handling in this disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms [1]. Herein included is the prominent example of gene silencing caused by micro RNAs (miRNAs) and small interfering RNAs (siRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of RNAs among the well-studied ncRNAs that target the ribosome itself [2,3]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. Recent studies show the presence of small regulatory RNAs (sRNAs) in archaea which are involved in many biological processes including stress response and metabolic regulation [4]. To date the biological function and the targets of these archaeal sRNAs are only described for a few examples. There are reports of sRNAs binding to the 5’ as well as to the 3’ of mRNAs [5,6]. In addition to these findings, a tRNA derived fragment (tRF) of Valine tRNA was found in a genomic screen of RNAs associated with the ribosome in H. volcanii in our laboratory [3]. This Valine tRF seems to be processed in a stress-dependent manner and showed in vitro binding to the ribosome and inhibited in vitro translation. These results showed that Valine tRF is capable to regulate translation in H. volcanii by targeting the ribosome. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression patterns in response to stress conditions. To investigate the biological relevance of some of the ribosome-associated ncRNA candidates, knock-out and phenotypic characterization studies are done. The genomic knock out of a hypothetical ORF (198nt), where one putative rancRNA candidate (46nt) named IG33 was detected in the library at the beginning of the ORF, showed interesting growth phenotype under specific stress conditions. Furthermore a strain with an introduced start to stop codon mutation in this hypothetical ORF still shows the same phenotype indicating that rather the missing protein than the missing sRNA causes this growth phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute vascular rejection (AVR), in particular microvascular thrombosis, is an important barrier to successful pig-to-primate xenotransplantation. Here, we report the generation of pigs with decreased tissue factor (TF) levels induced by small interfering (si)RNA-mediated gene silencing. Porcine fibroblasts were transfected with TF-targeting small hairpin (sh)RNA and used for somatic cell nuclear transfer. Offspring were analyzed for siRNA, TF mRNA and TF protein level. Functionality of TF downregulation was investigated by a whole blood clotting test and a flow chamber assay. TF siRNA was expressed in all twelve liveborn piglets. TF mRNA expression was reduced by 94.1 ± 4.7% in TF knockdown (TFkd) fibroblasts compared to wild-type (WT). TF protein expression in PAEC stimulated with 50 ng/mL TNF-α was significantly lower in TFkd pigs (mean fluorescence intensity TFkd: 7136 ± 136 vs. WT: 13 038 ± 1672). TF downregulation significantly increased clotting time (TFkd: 73.3 ± 8.8 min, WT: 45.8 ± 7.7 min, p < 0.0001) and significantly decreased thrombus formation compared to WT (mean thrombus coverage per viewing field in %; WT: 23.5 ± 13.0, TFkd: 2.6 ± 3.7, p < 0.0001). Our data show that a functional knockdown of TF is compatible with normal development and survival of pigs. TF knockdown could be a valuable component in the generation of multi-transgenic pigs for xenotransplantation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adenovirus type 5 E1A gene was originally developed as a gene therapy to inhibit tumorigenicity of HER-2-overexpressing cells by transcriptional downregulation of HER-2. Our goal is to improve the overall efficacy of E1A gene therapy. To achieve this goal, we have conducted two preclinical experiments. ^ First, we hypothesized that Bcl-2 overexpressing ovarian cancer is resistant to E1A gene therapy. This hypothesis is based on that the 19 kDa protein product of the adenoviral E1B gene which is homologous to Bcl-2 inhibits E1A-induced apoptosis. Treating high Bcl-2-xpressing cells with E1A in combination with an antisense oligonucleotide to Bcl-2 (Bcl-2-ASO) resulted in a significant decrease in cell viability due to an increased rate of apoptosis relative to cells treated with E1A alone. In an ovarian cancer xenograft model, mice implanted with low HER-2, high Bcl-2 cells, treated with E1A plus Bcl-2-ASO led to prolonged survival. Bcl-2 thus may serve as a predictive molecular marker enabling us to select patients with ovarian cancer who will benefit significantly from E1A gene therapy. ^ Second, we elucidated the molecular mechanism governing the anti-tumor effect of E1A in ovarian cancer to identify a more potent tumor suppressor gene. We identified PEA-15 (phospho-protein enriched in astrocytes) upregulated in E1A transfected low HER-2-expressing OVCAR-3 ovarian cancer cell, which showed decreased cell proliferation. PEA-15 moved ERK from the nucleus to the cytoplasm and inhibited ERK-dependent transcription and proliferation. Using small interfering RNA to knock down PEA-15 expression in OVCAR-3 cells made to constitutively express E1A resulted in accumulation of phosphoERK in the nucleus, an increase in Elk-1 activity, DNA synthesis, and anchorage-independent growth. PEA-15 also independently suppressed colony formation in some breast and ovarian cancer cell lines in which E1A is known to have anti-tumor activity. We conclude that the anti-tumor activity of E1A depends on PEA-15. ^ In summary, (1) Bcl-2 may serve as a predictive molecular marker of E1A gene therapy, allowing us to select patients and improve efficacy of E1A gene therapy. (2) PEA-15 was identified as a component of the molecular mechanism governing the anti-tumor activity of E1A in ovarian cancer, (3) PEA-15 may be developed as a novel therapeutic gene. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aberrant expression and/or activation of Src Family of non-receptor protein tyrosine kinases (SFKs) occur frequently during progressive stages of multiple types of human malignancies, including prostate cancer. Two SFKs, Src and Lyn, are expressed and implicated in prostate cancer progression. Work in this dissertation investigated the specific roles of Src and Lyn in the prostate tumor progression, and the effects of SFK inhibition on prostate tumor growth and lymph node metastasis in pre-clinical mouse models. ^ Firstly, using a pharmacological inhibitor of SFKs in clinical trials, dasatinib, I demonstrated that SFK inhibition affects both cellular migration and proliferation in vitro. Systemic administration of dasatinib reduced primary tumor growth, as well as development of lymph node metastases, in both androgen-sensitive and -resistant orthotopic prostate cancer mouse models. Immunohistochemical analysis of the primary tumors revealed that dasatinib treatment decreased SFK phosphorylation but not expression, resulting in decreased cellular proliferation and increased apoptosis. For this analysis of immunohistochemical stained tissues, I developed a novel method of quantifying immunohistochemical stain intensity that greatly reduced the inherent bias in analyzing staining intensity. ^ To determine if Src and Lyn played overlapping or distinct roles in prostate cancer tumor growth and progression, Src expression alone was inhibited by small-interfering RNA. The resulting stable cell lines were decreased in migration, but not substantially affected in proliferation rates. In contrast, an analogous strategy targeting Lyn led to stable cell lines in which proliferation rates were significantly reduced. ^ Lastly, I tested the efficacy of a novel SFK inhibitor (KX2-391) targeting peptide substrate-binding domain, on prostate cancer growth and lymph node metastasis in vivo. I demonstrated that KX2-391 has similar effects as dasatinib, an ATP-competitive small molecular inhibitor, on both the primary tumor growth and development of lymph node metastasis in vivo, work that contributed to the first-in-man Phase I clinical trial of KX2-391. ^ In summary, studies in this dissertation provide the first demonstration that Src and Lyn activities affect different cellular functions required for prostate tumor growth and metastasis, and SFK inhibitors effectively reduce primary tumor growth and lymph node metastasis. Therefore, I conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mammalian Forkhead Box (Fox) transcription factor (FoxM1) is implicated in tumorgenesis. However, the role and regulation of FoxM1 in gastric cancer remain unknown.^ I examined FoxM1 expression in 86 cases of primary gastric cancer and 57 normal gastric tissue specimens. I found weak expression of FoxM1 protein in normal gastric mucosa, whereas I observed strong staining for FoxM1 in tumor-cell nuclei in various gastric tumors and lymph node metastases. The aberrant FoxM1 expression is associated with VEGF expression and increased angiogenesis in human gastric cancer. A Cox proportional hazards model revealed that FoxM1 expression was an independent prognostic factor in multivariate analysis. Furthermore, overexpression of FoxM1 by gene transfer significantly promoted the growth and metastasis of gastric cancer cells in orthotopic mouse models, whereas knockdown of FoxM1 expression by small interfering RNA did the opposite. Next, I observed that alteration of tumor growth and metastasis by elevated FoxM1 expression was directly correlated with alteration of VEGF expression and angiogenesis. In addition, promotion of gastric tumorigenesis by FoxM1 directly and significantly correlated with transactivation of vascular endothelial growth factor (VEGF) expression and elevation of angiogenesis. ^ To further investigate the underlying mechanisms that result in FoxM1 overexpression in gastric cancer, I investigated FoxM1 and Krüppel-like factor 4 (KLF4) expressions in primary gastric cancer and normal gastric tissue specimens. Concomitance of increased expression of FoxM1 protein and decreased expression of KLF4 protein was evident in human gastric cancer. Enforced KLF4 expression suppressed FoxM1 protein expression. Moreover, a region within the proximal FoxM1 promoter was identified to have KLF4-binding sites. Finally, I found an increased FoxM1 expression in gastric mucosa of villin-Cre -directed tissue specific Klf4-null mice.^ In summary, I offered both clinical and mechanistic evidence that dysregulated expression of FoxM1 play an important role in gastric cancer development and progression, while KLF4 mediates negative regulation of FoxM1 expression and its loss significantly contributes to FoxM1 dysregulation. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-Hodgkin's Lymphomas (NHL) are a group (>30) of important human lymphoid cancers that unlike other tumors today, are showing a marked increase in incidence. The lack of insight to the pathogenesis of B-cell NHL poses a significant problem in the early detection and effective treatment of these malignancies. This study shows that large B-cell lymphoma (LBCL) cells, the most common type of B-cell NHL (account for more than 30% of cases), have developed a novel mechanism for autonomous neoplastic B cell growth. We have identified that the key transcription factor NF-κB, is constitutively activated in LBCL cell lines and primary biopsy-derived LBCL cells, suggesting that they are autonomously activated, and do not require accessory T-cell signaling for cell growth and survival. Further studies have indicated that LBCL cells ectopically express an important T-cell associated co-mitogenic factor, CD154 (CD40 ligand), that is able to internally activate the CD401NF-κB pathway, through constitutive binding to its cognate receptor, CD40, on the lymphoma cell surface. CD40 activation triggers the formation of a “Signalosome” comprising virtually the entire canonical CD40/NF-κB signaling pathway that is anchored by CD40 in plasma membrane lipid rafts. The CD40 Signalosome is vulnerable to interdiction by antibody against CD40 that disrupts the Signalosome and induces cell death in the malignant cells. In addition to constitutive NF-κB activation, we have found that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL cells. We have demonstrated that the constitutively active NFATc1 and c-rel members of the NFAT and NF-κB families of transcription factors, respectively, interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 and c-rel with small interfering RNA inhibits CD154 gene transcription and lymphoma cell growth. Our findings suggest that continuous CD40 activation not only provides dysregulated proliferative stimuli for lymphoma cell growth and extended tumor cell survival, but also allows continuous regeneration of the CD40 ligand in the lymphoma cell and thereby recharges the system through a positive feedback mechanism. Targeting the CD40/NF-κB signaling pathway could provide potential therapeutic modalities for LBCL cells in the future. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Constitutive albumin uptake by the proximal tubule is achieved by a receptor-mediated process in which the Cl- channel, ClC-5, plays an obligate role. Here we investigated the functional interaction between ClC-5 and ubiquitin ligases Nedd4 and Nedd4-2 and their role in albumin uptake in opossum kidney proximal tubule (OK) cells. In vivo immunoprecipitation using an anti-HECT antibody demonstrated that ClC-5 bound to ubiquitin ligases, whereas glutathione S-transferase pull-downs confirmed that the C terminus of ClC-5 bound both Nedd4 and Nedd4-2. Nedd4-2 alone was able to alter ClC-5 currents in Xenopus oocytes by decreasing cell surface expression of ClC-5. In OK cells, a physiological concentration of albumin (10 mug/ml) rapidly increased cell surface expression of ClC-5, which was also accompanied by the ubiquitination of ClC-5. Albumin uptake was reduced by inhibiting either the lysosome or proteasome. Total levels of Nedd4-2 and proteasome activity also increased rapidly in response to albumin. Overexpression of ligase defective Nedd4-2 or knockdown of endogenous Nedd4-2 with small interfering RNA resulted in significant decreases in albumin uptake. In contrast, pathophysiological concentrations of albumin (100 and 1000 mug/ml) reduced the levels of ClC-5 and Nedd4-2 and the activity of the proteasome to the levels seen in the absence of albumin. These data demonstrate that normal constitutive uptake of albumin by the proximal tubule requires Nedd4-2, which may act via ubiquitination to shunt ClC-5 into the endocytic pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of total body weight and 50% of energy expenditure and is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. Excessive caloric intake is sensed by the brain and induces beta-adrenergic receptor (beta-AR)- mediated adaptive thermogenesis. beta-AR null mice develop severe obesity on a high fat diet. However, the target gene(s), target tissues(s), and molecular mechanism involved remain obscure. We observed that 30 - 60 min of beta-AR agonist ( isoprenaline) treatment of C2C12 skeletal muscle cells strikingly activated (> 100-fold) the expression of the mRNA encoding the nuclear hormone receptor, Nur77. In contrast, the expression of other nuclear receptors that regulate lipid and carbohydrate metabolism was not induced. Stable transfection of Nur77-specific small interfering RNAs (siNur77) into skeletal muscle cells repressed endogenous Nur77 mRNA expression. Moreover, we observed attenuation of gene and protein expression associated with the regulation of energy expenditure and lipid homeostasis, for example AMP-activated protein kinase gamma 3, UCP3, CD36,adiponectin receptor 2, GLUT4, and caveolin-3. Attenuation of Nur77 expression resulted in decreased lipolysis. Finally, in concordance with the cell culture model, injection and electrotransfer of siNur77 into mouse tibialis cranialis muscle resulted in the repression of UCP3 mRNA expression. This study demonstrates regulatory cross-talk between the nuclear hormone receptor and beta-AR signaling pathways. Moreover, it suggests Nur77 modulates the expression of genes that are key regulators of skeletal muscle lipid and energy homeostasis. In conclusion, we speculate that Nur77 agonists would stimulate lipolysis and increase energy expenditure in skeletal muscle and suggest selective activators of Nur77 may have therapeutic utility in the treatment of obesity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: Classic lobular carcinomas (CLC) account for 10% to 15% of all breast cancers. At the genetic level, CLCs show recurrent physical loss of chromosome16q coupled with the lack of E-cadherin (CDH1 gene) expression. However, little is known about the putative therapeutic targets for these tumors. The aim of this study was to characterize CLCs at the molecular genetic level and identify putative therapeutic targets. Experimental Design: We subjected 13 cases of CLC to a comprehensive molecular analysis including immunohistochemistry for E-cadherin, estrogen and progesterone receptors, HER2/ neu and p53; high-resolution comparative genomic hybridization (HR-CGH); microarray-based CGH (aCGH); and fluorescent and chromogenic in situ hybridization for CCND1 and FGFR1. Results: All cases lacked the expression of E-cadherin, p53, and HER2, and all but one case was positive for estrogen receptors. HR-CGH revealed recurrent gains on 1q and losses on 16q (both, 85%). aCGH showed a good agreement with but higher resolution and sensitivity than HR-CGH. Recurrent, high level gains at 11q13 (CCND1) and 8p12-p11.2 were identified in seven and six cases, respectively, and were validated with in situ hybridization. Examination of aCGH and the gene expression profile data of the cell lines, MDA-MB-134 and ZR-75-1, which harbor distinct gains of 8p12-p11.2, identified FGFR1 as a putative amplicon driver of 8p12-p11.2 amplification in MDA-MB-134. Inhibition of FGFR1 expression using small interfering RNA or a small-molecule chemical inhibitor showed that FGFR1 signaling contributes to the survival of MDA-MB-134 cells. Conclusions: Our findings suggest that receptor FGFR1 inhibitors may be useful as therapeutics in a subset of CLCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chicken ovalbumin upstream promoter-transcription factors ( COUP-TFs) are orphan members of the nuclear hormone receptor ( NR) superfamily. COUP-TFs are involved in organogenesis and neurogenesis. However, their role in skeletal muscle ( and other major mass tissues) and metabolism remains obscure. Skeletal muscle accounts for similar to 40% of total body mass and energy expenditure. Moreover, this peripheral tissue is a primary site of glucose and fatty acid utilization. We utilize small interfering RNA ( siRNA)-mediated attenuation of Coup-TfI and II ( mRNA and protein) in a skeletal muscle cell culture model to understand the regulatory role of Coup-Tfs in this energy demanding tissue. This targeted NR repression resulted in the significant attenuation of genes that regulate lipid mobilization and utilization ( including Ppar alpha, Fabp3, and Cpt-1). This was coupled to reduced fatty acid beta-oxidation. Additionally we observed significant attenuation of Ucp1, a gene involved in energy expenditure. Concordantly, we observed a 5-fold increase in ATP levels in cells with siRNA-mediated repression of Coup-TfI and II. Furthermore, the expression of classical liver X receptor ( LXR) target genes involved in reverse cholesterol transport ( Abca1 and Abcg1) were both significantly repressed. Moreover, we observed that repression of the Coup-Tfs ablated the activation of Abca1, and Abcg1 mRNA expression by the selective LXR agonist, T0901317. In concordance, Coup-Tf-siRNA-transfected cells were refractory to Lxr-mediated reduction of total intracellular cholesterol levels in contrast to the negative control cells. In agreement Lxr-mediated activation of the Abca1 promoter in Coup-Tf-siRNA cells was attenuated. Collectively, these data suggest a pivotal role for Coup-Tfs in the regulation of lipid utilization/cholesterol homeostasis in skeletal muscle cells and the modulation of Lxr-dependent gene regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)-and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.