988 resultados para RING CONTRACTION REACTIONS
Resumo:
The objective of this experimental study is to capture the dynamic temporal processes that occur in changing work settings and to test how work control and individuals' motivational predispositions interact to predict reactions to these changes. To this aim, we examine the moderating effects of global self-determined and non-self-determined motivation, at different levels of work control, on participants' adaptation and stress reactivity to changes in workload during four trials of an inbox activity. Workload was increased or decreased at Trial 3, and adaptation to this change was examined via fluctuations in anxiety, coping, motivation, and performance. In support of the hypotheses, results revealed that, for non-self-determined individuals, low work control was stress-buffering and high work control was stress-exacerbating when predicting anxiety and intrinsic motivation. In contrast, for self-determined individuals, high work control facilitated the adaptive use of planning coping in response to a change in workload. Overall, this pattern of results demonstrates that, while high work control was anxiety-provoking and demotivating for non-self-determined individuals, self-determined individuals used high work control to implement an adaptive antecedent-focused emotion regulation strategy (i.e., planning coping) to meet situational demands. Other interactive effects of global motivation emerged on anxiety, active coping, and task performance. These results and their practical implications are discussed.
Resumo:
This study investigated the effects of workload, control, and general self-efficacy on affective task reactions (i.e., demands-ability fit, active coping, and anxiety) during a work simulation. The main goals were: (1) to determine the extent general self-efficacy moderates the effects of demand and control on affective task reactions, and; (2) to determine if this varies as a function of changes in workload. Participants (N=141) completed an inbox activity under conditions of low or high control and within low and high workload conditions. The order of trials varied so that workload increased or decreased. Results revealed individuals with high general self-efficacy reported better demands-abilities fit and active coping as well as less anxiety. Three interactive effects were found. First, it was found that high control increased demands-abilities fit from trial 1 to trial 2, but only when workload decreased. Second, it was found that low efficacious individuals active coping increased in trial 2, but only under high control. Third, it was found that high control helped high efficacious individuals manage anxiety when workload decreased. However, for individuals with low general self-efficacy, neither high nor low control alleviated anxiety (i.e., whether workload increased or decreased over time).
Resumo:
The ortho, meta and para anions of methyl benzoate may be made in the source of a mass spectrometer by the S(N)2(Si) reactions between HO- and methyl (o-, m-, and p-trimethylsilyl)benzoate respectively. All three anions lose CO upon collisional activation to form the ortho anion of anisole in the ratio ortho>>meta > para. The rearrangement process is charge directed through the ortho anion. Theoretical calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that the conversion of the meta and para anions to the ortho anion prior to loss of CO involve 1,2-H transfer(s), rather than carbon scrambling of the methoxycarbonylphenyl anion. There are two mechanisms which can account for this rearrangement, viz. (A) cyclisation of the ortho anion centre to the carbonyl group of the ester to give a cyclic carbonyl system in which the incipient methoxide anion substitutes at one of the two equivalent ring carbons of the three membered ring to yield an intermediate which loses CO to give the ortho anion of anisole, and (B) an elimination reaction to give an intermediate benzyne-methoxycarbonyl anion complex in which the MeOCO- species acts as a MeO- donor, which then adds to benzyne to yield the ortho anion of anisole. Calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that (i) the barrier in the first step (the rate determining step) of process A is 87 kJ mol(-1) less than that for the synchronous benzyne process B, and (ii) there are more low frequency vibrations in the transition state for benzyne process B than for the corresponding transition state for process A. Stepwise process A has the lower barrier for the rate determining step, and the lower Arrhenius factor: we cannot differentiate between these two mechanisms on available evidence.
Resumo:
The E-CO(2) elimination reactions of alkyl hydroperoxides proceed via abstraction of an (x-hydrogen by a base: X- + (RRHCOOH)-R-1-H-2 -> HX + (RRC)-R-1-C-2=O + HO-. Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO- + CH3OOH, HO- + CD3OOH, and H18O- + CH3OOH. the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO- are the exclusive pathways observed for (CH3)(3)COOH, which has no (x-hydrogen. All results are consistent with the E-CO(2) mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO- + CH3OOH also reveals some interaction between H2O and HO- within the E(CO)2 product complex [H2O center dot center dot center dot CH2=O center dot center dot center dot HO-]. There is little evidence, however. for the formation of the most exothermic products H2O + CH2(OH)O-, which would arise from nuclephilic condensation of CH2=O and HO-. The results suggest that the product dynamics are not totally statistical but are rather direct after the E-CO(2) transition state. The larger HO- + CH3CH2OOH system displays more statistical behavior during complex dissociation.
Resumo:
Alkylperoxyl radicals are intermediates in the oxidation Of hydrocarbons. The reactive nature of these intermediates, however, has made therin elusive to direct observation and isolation. We have employed ion trap mass spectrometry to synthesize and characterize 4-carboxylatocyclohexyl radical anions ((center dot)C(6)H(10)-CO(2)(-)) and observe their reactivity in the presence of dioxygen. The resulting reaction is facile (k = 1.8 x 10(-10) cm(3) molecule(-1) s(-1) or 30% of calculated collision rate) and results in (i) the addition Of O(2) to form stabilized 4-carboxylatocyclohexylperoxyl radical anions ((center dot)OO-C(6)H(10)-CO(2)(-)), providing the first direct observation of a cyclohexylperoxyl radical, and (ii) elimination of HO(2)(center dot) and HO(center dot) radicals consistent with recent laser-induced fluorescence studies of the reaction of neutral cyclohexyl radicals with O(2). Electronic structure calculations at the B3LYP/6-31+G(d) level of theory reveal viable pathways for the observed reactions showing that formation of the peroxyl radical is exothermic by 37 kcal mol(-1) with subsequent transition states its low as -6.6 kcal mol(-1) (formation of HO(2)(center dot)) and -9.1 kcal mol(-1) (formation of HO(center dot)) with respect to the entrance channel. The combined computational and experimental data Suggest that the structures of the reaction products correspond to cyclohexenes and epoxides from HO(2)(center dot) and HO(center dot) loss, respectively, while alternative pathways leading to cyclohexanone or ring-opened isomers ate not observed, Activation of the charged peroxyl radical (center dot)OO-C(6)H(10)-CO(2)(-) by collision induced disassociation also results in the loss Of HO(2)(center dot) and HO(center dot) radicals confirming that these products are directly connected to the peroxyl radical intermediate.
Resumo:
The gas phase degradation reactions of the chemical warfare agent (CWA) simulant, dimethyl methylphosphonate (DMMP), with the hydroperoxide anion (HOO(-)) were investigated using a modified quadrupole ion trap mass spectrometer. The HOO(-) anion reacts readily with neutral DMMP forming two significant product ions at m/z 109 and m/z 123. The major reaction pathways correspond to (i) the nucleophilic substitution at carbon to form \[CH(3)P(O)(OCH(3))O](-) (m/z 109) in a highly exothermic process and (ii) exothermic proton transfer. The branching ratios of the two reaction pathways, 89% and 11% respectively, indicate that the former reaction is significantly faster than the latter. This is in contrast to the trend for the methoxide anion with DMMP, where proton transfer dominates. The difference in the observed reactivities of the HOO(-) and CH(3)O(-) anions can be considered as evidence for an a-effect in the gas phase and is supported by electronic structure calculations at the B3LYP/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory that indicate the S(N)2(carbon) process has an activation energy 7.8 kJ mol(-1) lower for HOO(-) as compared to CH(3)O(-). A similar alpha-effect was calculated for nucleophilic addition-elimination at phosphorus, but this process an important step in the perhydrolysis degradation of CWAs in solution - was not observed to occur with DMMP in the gas phase. A theoretical investigation revealed that all processes are energetically accessible with negative activation energies. However, comparison of the relative Arrhenius pre-exponential factors indicate that substitution at phosphorus is not kinetically competitive with respect to the S(N)2(carbon) and deprotonation processes.
Resumo:
A multiscale approach that bridges the biophysics of the actin molecules at nanoscale and the biomechanics of actin filament at microscale level is developed and used to evaluate the mechanical performances of actin filament bundles. In order to investigate the contractile properties of skeletal muscle which is induced by the protein motor of myosin, a molecular model is proposed in the prediction of the dynamic behaviors of skeletal muscle based on classic sliding filament model. Randomly distributed myosin motors are applied on a 2.2 μm long sarcomere, whose principal components include actin and myosin filaments. It can be found that, the more myosin motors on the sarcomere, the faster the sarcomere contracts. The result demonstrates that the sarcomere shortening speed cannot increase infinitely by the modulation of myosin, thus providing insight into the self-protective properties of skeletal muscles. This molecular filament sliding model provides a theoretical way to evaluate the properties of skeletal muscles, and contributes to the understandings of the molecular mechanisms in the physiological phenomenon of muscular contraction.
Resumo:
Long-range cross-ring reactions occur when (M - H)(-) ions of methoxy- and ethoxy-C6H4-(-)NCOR (R = H, CH3, C6H5 and CH3O) are subjected to collisional activation, These reactions are generally minor processes: a particular example is the cross-ring elimination p-C2H5O-C6H4-(NCOCH3)-N-- --> [CH3-(p-C2H5O-C6H4-NCO)] --> p-(O--)-C6H4-NCO + C2H4 + CH4. Major processes of these (M - H)(-) ions involve (i) losses of radicals to form stabilised radical anions, e.g. (a) loss of a ring H-. or (b) CH3. (or C2H5.) from the alkoxy group, and (ii) proximity effects when the two substituents are ortho, e.g. loss of CH3OH from o-CH3O-C6H4-(NCHO)-N-- yields deprotonated benzoxazole. Another fragmentation of an arylmethoxyl anion involves loss of CH2O. It is proposed that losses of CH2O are initiated by anionic centres but the actual mechanisms in the cases studied depend upon the substitution pattern of the methoxyanilide: o- and p-methoxyanilides may undergo ipso proton transfer/elimination reactions, whereas the in-analogues undergo proton transfer reactions to yield an o-CH3O substituted aryl carbanion followed by proton transfer from CH3O to the carbanion site with concomitant loss of CH2O.
Resumo:
The unimolecular reactivities of a range of perbenzoate anions (X-C6H5CO3-), including the perbenzoate anion itself (X=H), nitroperbenzoates (X=para-, meta-, ortho-NO2), and methoxyperbenzoates (X=para-, meta-OCH3) were investigated in the gas phase by electrospray ionization tandem mass spectrometry. The collision-induced dissociation mass spectra of these compounds reveal product ions consistent with a major loss of carbon dioxide requiring unimolecular rearrangement of the perbenzoate anion prior to fragmentation. Isotopic labeling of the perbenzoate anion supports rearrangement via an initial nucleophilic aromatic substitution at the ortho carbon of the benzene ring, while data from substituted perbenzoates indicate that nucleophilic attack at the ipso carbon can be induced in the presence of electron-withdrawing moieties at the ortho and para positions. Electronic structure calculations carried out at the B3LYP/6311++G(d,p) level of theory reveal two competing reaction pathways for decarboxylation of perbenzoate anions via initial nucleophilic substitution at the ortho and ipso positions, respectively. Somewhat surprisingly, however, the computational data indicate that the reaction proceeds in both instances via epoxidation of the benzene ring with decarboxylation resulting-at least initially-in the formation of oxepin or benzene oxide anions rather than the energetically favored phenoxide anion. As such, this novel rearrangement of perbenzoate anions provides an intriguing new pathway for epoxidation of the usually inert benzene ring.
Resumo:
The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous Solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.
Resumo:
Inspired by the interesting photo- and electrochemical properties observed in bipyridinium and porphyrin containing interlocked catenanes, herein we describe new approaches towards the synthesis of related rotaxanes. Previous efforts in this domain had been hampered by the limited range of chemical reactions that are compatible with these motifs, however the use of a “click” methodology, together with a better understanding of the size of these strapped porphyrin macrocycles, resulted in the synthesis of a bipyridinium porphyrin [2]rotaxane in modest yields. X-ray crystallography of the zinc metalloporphyrin macrocycle used in this study revealed that in the solid state, these strapped porphyrins adopt a 1-dimensional coordination polymer, in which an oxygen atom in the strap of one macrocycle is coordinated to the zinc metal center in an adjacent porphyrin ring
Resumo:
Artemisinin (ART) based combination therapy (ACT) is used as the first line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART induced ring stage dormancy and recovery has been implicated as possible cause of recrudescence; however, little is known about the characteristics of dormant parasites including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA) induced dormancy and recovery. Transcription analysis showed an immediate down regulation for 10 genes following exposure to DHA, but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, were also maintained. Additions of inhibitors for biotin acetyl CoA carbozylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively following DHA treatment. Our results demonstrate most metabolic pathways are down regulated in DHA induced dormant parasites. In contrast fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment.
Resumo:
Purpose To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation induced skin reactions (RISR). Methods and Materials A total of 174 patients were randomised and participated in the study. Patients either received Cream 1 (the natural oil-based emulsion containing allantoin) or Cream 2 (aqueous cream). Skin toxicity, pain, itching and skin-related quality of life scores were collected for up to four weeks after radiation treatment. Results Patients who received Cream 1 had a significantly lower average level of Common Toxicity Criteria at week 3 (p<0.05), but had statistically higher average levels of skin toxicity at weeks 7, 8 and 9 (all p<0.001). Similar results were observed when skin toxicity was analysed by grades. With regards to pain, patients in the Cream 2 group had a significantly higher average level of worst pain (p<0.05) and itching (p=0.046) compared to the Cream 1 group at week 3, however these differences were not observed at other weeks. In addition, there was a strong trend for Cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison to Cream 1 (p=0.056). Overall, more participants in the Cream 1 group were required to use another topical treatment at weeks 8 (p=0.049) and 9 (p=0.01). Conclusion The natural oil-based emulsion containing allantoin appears to have similar effects for managing skin toxicity compared to aqueous cream up to week 5, however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream appears to be a more preferred option.
Resumo:
PURPOSE Colorectal signet-ring cell carcinoma (SRCC) is rare, and very little detailed information on the molecular biology of the disease is available. METHODS The literature on the clinical, pathological and, in particular, the molecular biology of this rare entity was critically reviewed. The reviewed articles take into account a total of 1,817 cases of SRCC, but only 143 cases have molecular data available. The characteristics of two patients with colorectal SRCC were also discussed. RESULTS Colorectal SRCC mostly occurs in younger patients, is larger and has different site predilection compared with conventional colorectal adenocarcinoma. It can occur as one of the synchronous cancers in the colorectum. The cancer is usually diagnosed at advanced stages because of the late manifestation of symptoms, and aggressive treatment strategy is required. Limited reports in the literature have shown that the variant of colorectal cancer demonstrated a different pattern of genetic alterations of common growth kinase-related oncogenes (K-ras, BRAF), tumour suppressor genes (p53, p16), gene methylation and cell adhesion-related genes related to the Wingless signalling pathway (E-cadherin and beta-catenin) from conventional colorectal adenocarcinoma. Colorectal SRCC also showed high expression of mucin-related genes and genes related to the gastrointestinal system. There was also a higher prevalence of microsatellite instability-high tumours and low Cox-2 expression in colorectal SRCC as opposed to conventional adenocarcinoma. CONCLUSIONS Colorectal SRCC has unique molecular pathological features. The unique molecular profiles in SRCC may provide molecular-based improvements to patient management in colorectal SRCC.
Resumo:
Use of the hand is vital in working life due to the grabbing and pinching it performs. Spherical grip is the most commonly used, due to similarity to the gripping of a computer mouse. Knowledge of its execution and the involved elements is essential. Analysis of this exertion with surface electromyography devices (to register muscular activity) and accelerometer devices (to register movement values ) can provide multiple variables. Six subjects performed ball gripping and registered real-time electromyography (thenar region, hypothenar region, first dorsal interosseous, flexors of the wrist, flexor carpi ulnaris and extensors of the wrist muscles) and accelerometer (thumb, index, middle, ring, pinky and palm) values. The obtained data was resampled “R software” and processed “Matlab Script” based on an automatic numerical sequence recognition program. Electromyography values were normalized on the basis of maximum voluntary contraction, whilst modular values were calculated for the acceleration vector. After processing and analysing the obtained data and signal, it was possible to identify five stages of movement in accordance with the module vector from the palm. The statistical analysis of the variables was descriptive: average and standard deviations. The outcome variables focus on the variations of the modules of the vector (between the maximum and minimum values of each module and phase) and the maximum values of the standardized electromyography of each muscle. Analysis of movement through accelerometer and electromyography variables can give us an insight into the operation of spherical grip. The protocol and treatment data can be used as a system to complement existing assessments in the hand.