986 resultados para RIII-reflex
Resumo:
P>In the present study, we investigated the effects of inhibition of the lateral hypothalamus (LH) neurotransmission with bilateral microinjection of CoCl(2), a non-selective blocker of neurotransmission, on modulation of cardiac baroreflex responses in conscious rats as well as the involvement of LH glutamatergic neurotransmission in this modulation. Reflex bradycardiac and tachycardiac responses to blood pressure increases (following i.v. infusion of phenylephrine) or decreases (following i.v. infusion of sodium nitroprusside) were investigated in conscious male Wistar rats. Responses were evaluated before and after microinjection of 1 nmol/100 nL CoCl(2), 2 nmol/100 nL 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzoquinoxaline-7-sulphonamide (NBQX; a selective non-N-methyl-d-aspartate (NMDA) glutamate receptor antagonist) or different doses (2, 4 or 8 nmol/100 nL) of the selective NMDA glutamate receptor antagonist LY235959. Microinjection of CoCl(2) into the LH had no effect on the tachycardiac baroreflex response, but did evoke a decrease in the reflex bradycardia caused by increases in blood pressure. Microinjection of NBQX into the LH had a similar effect on reflex bradycardia as CoCl(2), but had no effect on the tachycardiac response. Microinjection of increasing doses of LY235959 into the LH had no effect on the cardiac baroreflex response. In conclusion, the data suggest that the LH has a tonic facilitatory influence on the parasympathetic component of the baroreflex. The results also indicate that this facilitatory influence is mediated by local LH glutamatergic neurotransmission through non-NMDA glutamatergic receptors.
Resumo:
The insular cortex (IC) has been reported to modulate the cardiac parasympathetic activity of the baroreflex in unanesthetized rats. However, which neurotransmitters are involved in this modulation is still unclear. In the present study, we evaluated the possible involvement of local IC-noradrenergic neurotransmission in modulating reflex bradycardiac responses. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL), into the IC of male Wistar rats, increased the gain of reflex bradycardia in response to mean arterial pressure (MAP) increases evoked by intravenous infusion of phenylephrine. However, bilateral microinjection of equimolar doses of either the selective alpha(2)-adrenoceptor antagonist RX821002 or the non-selective beta-adrenoceptor antagonist propranolol into the IC did not affect the baroreflex response. No effects were observed in basal MAP or heart rate values after bilateral microinjection of noradrenergic antagonists into the IC, thus suggesting no tonic influence of IC-noradrenergic neurotransmission on resting cardiovascular parameters. In conclusion, these data provide evidence that local IC-noradrenergic neurotransmission has an inhibitory influence on baroreflex responses to blood pressure increase evoked by phenylephrine infusion through activation of alpha(1)-adrenoceptors. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Enhanced sympathetic outflow to the heart and resistance vessels greatly contributes to the onset and maintenance of neurogenic hypertension. There is a consensus that the development of hypertension (clinical and experimental) is associated with an impairment of sympathetic reflex control by arterial baroreceptors. More recently, chronic peripheral chemoreflex activation, as observed in obstructive sleep apnea, has been proposed as another important risk factor for hypertension. In this review, we present and discuss recent experimental evidence showing that changes in the respiratory pattern, elicited by chronic intermittent hypoxia, play a key role in increasing sympathetic activity and arterial pressure in rats. This concept parallels results observed in other models of neurogenic hypertension, such as spontaneously hypertensive rats and rats with angiotensin II-salt-induced hypertension, pointing out alterations in the central coupling of respiratory and sympathetic activities as a novel mechanism underlying the development of neurogenic hypertension.
Resumo:
The Wistar Audiogenic Rat (WAR) strain is a genetic model of sound-induced reflex epilepsy which was selected starting from audiogenic seizures susceptible Wistar rats. Wistar resistant rats were used as WAR`s control in this study. In the acute situation, audiogenic seizures (AS) in WARs mimic tonic-clonic seizures and, in the chronic protocol, mimic temporal lobe epilepsy. AS have been shown to evoke neuroendocrine responses; however, the hypothalamic-pituitary-adrenal activity in the WAR has not been established. The aim of this study was to evaluate the hypothalamic-pituitary-adrenal axis (HPA) responses to exogenous ACTH stimulation (8 ng/rat), fifteen minute restraint stress and circadian variation (8 am and 8 pm) under rest conditions in these animals through plasma measurements of ACTH and corticosterone concentrations. We also measured the body weight from birth to the 9th week of life and determined adrenal gland weight. We found that WARs are smaller than Wistar and presented a higher adrenal gland weight with a higher level of corticosterone release after intravenous ACTH injection. They also showed altered HPA axis circadian rhythms and responses to restraint stress. Our data indicate that, despite the lower body weight, WARs have increased adrenal gland weight associated with enhanced pituitary and adrenal responsiveness after HPA axis stimulation. Thus, we propose WARs as a model to study stress-epilepsy interactions and epilepsy-neuropsychiatry comorbidities. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Resumo:
Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.
Resumo:
Tonic immobility (TI) is an innate defensive behavior characterized by a state of physical inactivity and diminished responsiveness to environmental stimuli. Behavioral adaptations to changes in the external and internal milieu involve complex neuronal network activity and a large number of chemical neurotransmitters. The TI response is thought to be influenced by serotonin (5-HT) activity in the central nervous system (CNS) of vertebrates, but the neuronal groups involved in the mechanisms underlying this behavior are poorly understood. Owing to its extensive afferents and efferents, the dorsal raphe nucleus (DRN) has been implicated in a great variety of physiological and behavioral functions. in the current study, we investigated the influence of serotonergic 5-HT(1A) and 5-HT(2) receptor activity within the DRN on the modulation of TI behavior in the guinea pig. Microinjection of a 5-HT(1A) receptor agonist (8-OH-DPAT, 0.01 and 0.1 mu g) decreased TI behavior, an effect blocked by pretreatment with WAY-100635 (0.033 mu g), a 5-HT(1A) antagonist. In contrast, activation of 5-HT(2) receptors within the DRN (alpha-methyl-5-HT, 0.5 mu g) increased the TI duration, and this effect could be reversed by pretreatment with an ineffective dose (0.01 mu g) of ketanserine. Since the 5-HT(1A) and 5-HT(2) agonists decreased and increased, respectively, the duration of TI, different serotonin receptor subtypes may play distinct roles in the modulation of TI in the guinea pig. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.
Resumo:
Background: High sodium salicylate doses can cause reversible hearing loss and tinnitus, possibly due to reduced outer hair cell electromotility. Sodium salicylate is known to alter outer hair cell structure and function. This study determined the reversibility and cochlear recovery time after administration of an ototoxic sodium salicylate dose to guinea pigs with normal cochlear function. Study design: Prospective experimental investigation. Methods: All animals received a single 500 mg sodium salicylate dose, but with different durations of action. Function was evaluated before drug administration and immediately before sacrifice. Cochleae were processed and viewed using scanning electron microscopy. Results: Changes in outer hair cell function were observed to be present 2 hours after drug administration, with recovery of normal anatomy beginning after 24 hours. Subsequently, derangement and distortion of cilia reduced, with effects predominantly in row three. At 168 hours, cilia were near-normal but with mild distortions which interfered with normal cochlear physiology. Conclusions: Ciliary changes persisted for up to 168 hours after ototoxic sodium salicylate administration.
Resumo:
Purpose: To describe spontaneous blink kinematics in Graves` upper eyelid retraction (UER). Methods: The magnetic search coil technique was used to record spontaneous blinks of 15 healthy subjects (aged 23-56 years, 15 eyelids) and 15 patients with Graves` UER (aged 22-62 years, 15 eyelids) during a 5-min period of video observation, and the signals were digitized at 200 Hz (12 bits). Overall, a total of 2,798 blinks were recorded for the controls and 1,860 for the patients. The distance between pupil center and upper eyelid margin in the primary position of gaze (MRD) was measured with the Image J software. Results: The blinking rate of patients was lower than that of control subjects, with a mean (+/-SEM) blinking rate (blinks/min) of 13.0 +/- 1.7 for patients and of 20.0 +/- 2.1 for the controls (t = 2.58, P = 0.016). There were no statistically significant differences in blink amplitude between controls (22.7 +/- 3.1 degrees) and Graves` patients (24.7 +/- 3.3 degrees). However, while only 22% of the blinks performed by controls were smaller than MRD, this rate was 78% for patients. In addition, in blinks larger than 25, patients showed lower down-phase velocity than controls. Conclusions: Patients with Graves` UER show reduced blinks rates and abnormal blink kinematics, which might be related to the development of exposure keratitis in this disease.
Resumo:
Aminoglycoside antibiotics cause considerable toxicity to the inner ear. A progressive hearing loss at high frequencies resulted from the loss of hair cells in the base of the cochlea and a constant preoccupation with finding a treatment that protects against their toxic effects. A self-protection phenomenon to high ototoxic doses of gentamicin is proposed in this paper. Thirty-eight adult guinea pigs with normal hearing were tested using Preyer`s reflex and the distortion product otoacoustic emission (DPOAE) test, and their cochleae were analyzed by scanning electron microscopy. To the four groups investigated, group I (control) and group II (low dose, 10 mg/kg/day for 30 days) showed a normal DPOEA and normal outer hair cells; group III (high dose, 160 mg/kg/day for 10 days) showed the absence of DPOEA and damage to the outer hair cells; and group IV (low dose, 10 mg/kg/day for 30 days followed by a high dose of 160 mg/kg/day for 10 days) showed a normal DPOEA and normal outer hair cells. These results demonstrate that there was a considerable self-protection phenomenon by gentamicin.
Resumo:
PURPOSE. To determine the shape of spontaneous interblink time interval distributions obtained in a long observation period in normal subjects and patients with Graves` orbitopathy. METHODS. The magnetic search coil technique was used to register the spontaneous blinking activity during 1 hour of video observation of two groups of 10 subjects each (normal controls aged 27-61 years, mean +/- SD = 46.0 +/- 13.6; patients with Graves` orbitopathy aged 33-61 years, mean +/- SD +/- 46.7 +/- 8.9). The spontaneous blink rate of each subject was calculated for the entire period of observation and for 56 five-minute bins. Histograms of the interblink time interval were plotted for each measurement of blink rate. RESULTS. Neither the overall mean blink rate (controls, 19.8 +/- 4.9; Graves`, 17.6 +/- 5.4) nor the interblink time (controls, 5.2 +/- 3.1, Graves`, 7.9 +/- 3.5) differed between the two groups. There was a large variation of both measurements when the 5-minute bins were considered. The interblink time distribution of all subjects was highly positively skewed when the 1-hour period was measured. A significant number of the 5-minute bin distributions deviated from the overall pattern and became symmetric. CONCLUSIONS. The normal blinking process is characterized by highly positively skewed interblink time distributions. This result means that most blinks have a short time interval, and occasionally a small number of blinks have long time intervals. The different patterns of distribution described in the early literature probably represent artifacts because of the small samples analyzed. (Invest Ophthalmol Vis Sci. 2011;52:3419-3424) DOI:10.1167/iovs.10-7060
Resumo:
Radiotherapy has been widely used given its increase in the successful outcomes and cure of some cancers. Aim: To evaluate the functionality of the auditory system in patients who underwent radiotherapy treatment for head and neck tumors. Materials and Methods: From May 2007 to May 2008, otorhinolaryngological and audiological evaluation (Pure Tone Audiometry (air and bone conduction), Speech Audiometry, Tympanometry, Acoustic Reflex testing and Distortion Product Otoacoustic Emissions) were performed in 19 patients diagnosed with head and neck neoplasia and treated with radiotherapy. Prospective case series study. Results: 10.5% left ears and 26.3% right ears had bilateral hearing loss soon after radiotherapy according to ASHA criteria. Conclusions: Radiotherapy treatment for head and neck cancer has ototoxic effects. Early programs of auditory rehabilitation should be offered to these patients.
Resumo:
This article describes the case of a 67-year-old woman who presented with a typical left hemifacial spasm of 8-month duration. After 2 months, she experienced lacinating and sharp shock-like pain in the left side of her face affecting the V1 and V2 territories and a discrete attenuation of nauseous reflex on the left side. CT angiography and MRI revealed significant compression of left cranial nerves V, VII, VIII, IX and X by a giant and tortuous vertebro-basilar arterial complex. This case illustrates the nonlinearity of the relationship between the presence of the stressor factor and the actual manifestation of the disease.
Resumo:
The main issue regarding pediatric audiology diagnosis is determining procedures to configure reliable results which can be used to predict frequency-specific hearing thresholds. Aim: To investigate the correlation between auditory steady-state response (ASSR) with other tests in children with sensorineural hearing loss. Methods: Prospective cross-sectional contemporary cohort study. Twenty-three children (ages 1 to 7; mean, 3 years old) were submitted to ASSR, behavioral audiometry, click audiometry brain stem response (ABR), tone burst ABR, and predicting hearing level from the acoustic reflex. Results: the correlation between behavioral thresholds and ASSR was (0.70- 0.93), for the ABR tone burst it was (0.73 -0.93), for the ABR click it was (0.83-0.89) only at 2k and 4 kHz. The match between the ASSR and the hearing threshold prediction rule was considered moderate. Conclusion: there was a significant correlation between the ASSR and audiometry, as well as between ABR click (2k and 4 kHz) and for the ABR tone burst. The acoustic reflex can be used to add information to diagnosis in children.