940 resultados para RESOLVED INFRARED-SPECTROSCOPY
Resumo:
Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R 2 =0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w-1) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm-1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.
Resumo:
Darunavir, a protease inhibitor used in the treatment of HIV infection, presents few methods for its determination in pharmaceuticals. Infrared (IR) spectroscopy offers the possibility of obtaining spectra relatively quickly, providing interesting information, analytically, qualitatively or quantitatively. Capillary electrophoresis (CE) performs separations of high efficiency in shorter time with reagents and samples in small quantity. These two methods are cost-benefitted when we evaluate the green level and the cost of analysis. Faster and cheaper methods without generating organic waste by IR and CE for the quantification of darunavir were developed and validated, focusing socioeconomic impact of analytical decisions. If the cost of acquisition, maintenance, production, analysis and conditioning of drugs and pharmaceuticals is high, consequently the price of this product in the market will be higher and it cannot be accessible to the patient. Treatment failure not only affects the quality of life of patients, but also contributes significantly to the economic burden of the health system. In this context there is a tool called Analysis of the Life Cycle, which comes to make us think in a multidimensional way focusing the whole, the parts and especially the interaction among the parts of a system.
Resumo:
The infrared absorption of polysiloxanes involves a strong band at around 1050 cm(-1), attributed to the antisymmetric vibration of siloxane bridges. The splitting of this band into two components is generally attributed to coupling between next-neighbor siloxane groups along the polysiloxane chain. From a quantitative analysis of the spectra of these materials, we find that this splitting is larger when the material is in thin-film form, and that the relative intensity of the two components is polarization dependent. We show that these effects are fully understandable in the theoretical framework of infrared absorption by thin films, and are related to long-range dipolar interactions responsible for the longitudinal-transverse splitting effect in crystalline materials. As a consequence, the polarization dependence of the infrared absorption observed for thin films does not appear to be associated with an orientational ordering in the film. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Oktaedrisch koordinierte Übergangsmetalle mit der Elektronenkonfiguration [Ar]3d4 - 3d7 können in zwei unterschiedlichen elektronischen Zuständen existieren: im High-Spin (HS) oder im Low-Spin (LS) Zustand. Zum Beispiel kann Fe(II) in 1A1g (LS) oder 5T2g (HS) Konfiguration auftreten.Besonderes Interesse besteht in der Aufklärung des Mechanismus der kooperativen Wechselwirkung, die den Spinübergang im Festkörper bestimmt. Hierzu müssen zunächst die internen Freiheitsgrade der molekularen Einheiten bekannt sein. Besonders der Beitrag der molekularen Schwingungen zur Entropiedifferenz, die die Triebkraft des Spinübergangs darstellt, ist von entscheidender Bedeutung. Bisher existieren nur wenige detaillierte Untersuchungen zu den Schwingungseigenschaften der Spincrossovermoleküle.In Rahmen der vorliegenden Arbeit wurden die Schwingungseigenschaften einiger Komplexverbindungen, die Spincrossover zeigen, im Detail untersucht. Dazu wurden temperaturabhängige Raman-, Fern- und Mittel-Infrarot-Spektroskopie, Isotopensubstitution und Normalkoordinatenanalysen (NKA) in Verbindung mit Dichtefunktional-Rechnungen (DFT) verwendet.Die gewonnenen Werte der zugeordneten Schwingungsfrequenzen und die bestimmten Kraftkonstantenänderungen können nun zur Verfeinerung von theoretischen Modellen zur Beschreibung des Spinübergangs verwendet werden.
Resumo:
Das Protein Cytochrom c Oxidase (CcO) ist ein Enzym der mitochondrialen Atmungskette. Als letzter Komplex (Komplex IV) einer Elektronentransportkette katalysiert sie die Reduktion von molekularem Sauerstoff zu Wasser. Hierbei werden Elektronen von Cytochrom c (Cc) in das Enzym geleitet. Die durch den Redoxprozess freiwerdende freie Enthalpie wird dazu genutzt, einen Protonengradienten über die innere Mitochondrien-Membran aufzubauen. Die zurückwandernden Protonen treiben in der ATP-Synthase die Produktion von Adenosintriphosphat (ATP) an, dem universellen Energieträger in lebenden Organismen. Gegenstand dieser Dissertation sind zeitaufgelöste ATR-FTIR-Messungen des direkten Elektronentransfers in die CcO. Das Protein wird hierzu orientiert auf einer Goldelektrode immobilisiert und in eine künstliche Membran rekonstituiert (Protein-tethered Bilayer Lipid Membrane, ptBLM). Das ptBLM-System wird hinsichtlich einer möglichst hohen Protein-Aktivität optimiert. Elektronen werden durch elektrochemische Anregung von der Elektrode in die CcO injiziert. Die Goldoberfläche wird auf die reflektierende Oberfläche eines Silizium-ATR-Kristalls aufgebracht. Durch die Präparation einer rauen Oberfläche (RMS-Rauigkeit ca. 5 nm) wird eine Verstärkung der IR-Absorption erreicht. Die mit den Ladungstransferprozessen einhergehenden Konformationsänderungen der die Redoxzentren umgebenden Gruppen (CONH-Gerüst und Aminosäure-Seitenketten) können durch Infrarot-Spektroskopie nachgewiesen werden. Phasensensitive Detektion (PSD) wird zur Rauschminderung eingesetzt, um Geschwindigkeitskonstanten für die Redox-Übergänge zu bestimmen. Im Bereich der Amid-I-Bande werden etliche Peaks identifiziert, die sich mit dem Redoxzustand des Proteins ändern. Für das CuA-Zentrum, welches als erstes der vier Redoxzentren der CcO reduziert wird, wird die schnellste Geschwindigkeitskonstante ks=4870/s ermittelt. Für das Häm a3-Zentrum wird eine Geschwindigkeitskonstante von ks=13,8/s ermittelt. Die Ergebnisse sind konsistent zu elektrochemischen und Raman-Spektroskopie-Experimenten, welche ebenfalls in unserer Gruppe durchgeführt wurden. Weitere Themen dieser Dissertation sind der Nachweis der Anwendbarkeit des ptBLM-Systems für andere Membranproteine (Beispiel: bakterielles photosynthetisches Reaktionszentrum) und der Einsatz des ATR-FTIR-Setups für verschiedene künstliche Membransysteme (Aktivitätsnachweis des OR5-Geruchsrezeptors in einer peptidgestützten Membran, Eigenschaften eines Oligoethylenglycol-Spacers).
Resumo:
X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn
Resumo:
Graphene nanoribbons (GNRs), which are defined as nanometer-wide strips of graphene, are attracting an increasing attention as one on the most promising materials for future nanoelectronics. Unlike zero-bandgap graphene that cannot be switched off in transistors, GNRs possess open bandgaps that critically depend on their width and edge structures. GNRs were predominantly prepared through “top-down” methods such as “cutting” of graphene and “unzipping” of carbon nanotubes, but these methods cannot precisely control the structure of the resulting GNRs. In contrast, “bottom-up” chemical synthetic approach enables fabrication of structurally defined and uniform GNRs from tailor-made polyphenylene precursors. Nevertheless, width and length of the GNRs obtainable by this method were considerably limited. In this study, lateral as well as longitudinal extensions of the GNRs were achieved while preserving the high structural definition, based on the bottom-up solution synthesis. Initially, wider (~2 nm) GNRs were synthesized by using laterally expanded monomers through AA-type Yamamoto polymerization, which proved more efficient than the conventional A2B2-type Suzuki polymerization. The wider GNRs showed broad absorption profile extending to the near-infrared region with a low optical bandgap of 1.12 eV, which indicated a potential of such GNRs for the application in photovoltaic cells. Next, high longitudinal extension of narrow (~1 nm) GNRs over 600 nm was accomplished based on AB-type Diels–Alder polymerization, which provided corresponding polyphenylene precursors with the weight-average molecular weight of larger than 600,000 g/mol. Bulky alkyl chains densely installed on the peripheral positions of these GNRs enhanced their liquid-phase processability, which allowed their formation of highly ordered self-assembled monolayers. Furthermore, non-contact time-resolved terahertz spectroscopy measurements demonstrated high charge-carrier mobility within individual GNRs. Remarkably, lateral extension of the AB-type monomer enabled the fabrication of wider (~2 nm) and long (>100 nm) GNRs through the Diels–Alder polymerization. Such longitudinally extended and structurally well-defined GNRs are expected to allow the fabrication of single-ribbon transistors for the fundamental studies on the electronic properties of the GNRs as well as contribute to the development of future electronic devices.
Resumo:
Biological homochirality on earth and its tremendous consequences for pharmaceutical science and technology has led to an ever increasing interest in the selective production, the resolution and the detection of enantiomers of a chiral compound. Chiral surfaces and interfaces that can distinguish between enantiomers play a key role in this respect as enantioselective catalysts as well as for separation purposes. Despite the impressive progress in these areas in the last decade, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination are lagging behind due to the lack of powerful experimental techniques to spot these interactions selectively with high sensitivity. In this article, techniques based on infrared spectroscopy are highlighted that are able to selectively target the chiral properties of interfaces. In particular, these methods are the combination of Attenuated Total Reflection InfraRed (ATR-IR) with Modulation Excitation Spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid-liquid interfaces and Vibrational Circular Dichroism (VCD), which is used to probe the structure of chirally-modified metal nanoparticles. The former technique aims at suppressing signals arising from non-selective interactions, which may completely hide the signals of interest due to enantiodiscriminating interactions. Recently, this method was successfully applied to investigate enantiodiscrimination at self-assembled monolayers of chiral thiols on gold surfaces. The nanometer size analogues of the latter--gold nanoparticles protected by a monolayer of a chiral thiol--are amenable to VCD spectroscopy. It is shown that this technique yields detailed structural information on the adsorption mode and the conformation of the adsorbed thiol. This may also turn out to be useful to clarify how chirality can be bestowed onto the metal core itself and the nature of the chirality of the latter, which is manifested in the metal-based circular dichroism activity of these nanoparticles.
Resumo:
Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.
Resumo:
We detect internal water molecules in a membrane-embedded receptor-transducer complex and demonstrate water structure changes during formation of the signaling state. Time-resolved FTIR spectroscopy reveals stimulus-induced repositioning of one or more structurally active water molecules to a significantly more hydrophobic environment in the signaling state of the sensory rhodopsin II (SRII)-transducer (HtrII) complex. These waters, distinct from bound water molecules within the SRII receptor, appear to be in the middle of the transmembrane interface region near the Tyr199(SRII)-Asn74(HtrII) hydrogen bond. We conclude that water potentially plays an important role in the SRII --> HtrII signal transfer mechanism in the membrane's hydrophobic core.
Resumo:
The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on endtidal CO2 (ET-CO2), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO2). tHb and StO2 were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO2 with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO2 decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased significantly. A significant decrease in ET-CO2 was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO2 are mainly caused by an altered breathing during the tasks that led a lowering of the CO2 content in the blood provoked a cerebral CO2 reaction, i.e. a vasoconstriction of blood vessels due to decreased CO2 pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Resumo:
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( R2cv = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
Resumo:
So far, the majority of reports on on-line measurement considered soil properties with direct spectral responses in near infrared spectroscopy (NIRS). This work reports on the results of on-line measurement of soil properties with indirect spectral responses, e.g. pH, cation exchange capacity (CEC), exchangeable calcium (Caex) and exchangeable magnesium (Mgex) in one field in Bedfordshire in the UK. The on-line sensor consisted of a subsoiler coupled with an AgroSpec mobile, fibre type, visible and near infrared (vis–NIR) spectrophotometer (tec5 Technology for Spectroscopy, Germany), with a measurement range 305–2200 nm to acquire soil spectra in diffuse reflectance mode. General calibration models for the studied soil properties were developed with a partial least squares regression (PLSR) with one-leave-out cross validation, using spectra measured under non-mobile laboratory conditions of 160 soil samples collected from different fields in four farms in Europe, namely, Czech Republic, Denmark, Netherland and UK. A group of 25 samples independent from the calibration set was used as independent validation set. Higher accuracy was obtained for laboratory scanning as compared to on-line scanning of the 25 independent samples. The prediction accuracy for the laboratory and on-line measurements was classified as excellent/very good for pH (RPD = 2.69 and 2.14 and r2 = 0.86 and 0.78, respectively), and moderately good for CEC (RPD = 1.77 and 1.61 and r2 = 0.68 and 0.62, respectively) and Mgex (RPD = 1.72 and 1.49 and r2 = 0.66 and 0.67, respectively). For Caex, very good accuracy was calculated for laboratory method (RPD = 2.19 and r2 = 0.86), as compared to the poor accuracy reported for the on-line method (RPD = 1.30 and r2 = 0.61). The ability of collecting large number of data points per field area (about 12,800 point per 21 ha) and the simultaneous analysis of several soil properties without direct spectral response in the NIR range at relatively high operational speed and appreciable accuracy, encourage the recommendation of the on-line measurement system for site specific fertilisation.