979 resultados para REPRESENTATION-FINITE TYPE
Resumo:
* The authors thank the “Swiss National Science Foundation” for its support.
Resumo:
In this paper, we are considered with the optimal control of a schrodinger equation. Based on the formulation for the variation of the cost functional, a gradient-type optimization technique utilizing the finite difference method is then developed to solve the constrained optimization problem. Finally, a numerical example is given and the results show that the method of solution is robust.
Resumo:
Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.
Resumo:
2000 Mathematics Subject Classification: 94A12, 94A20, 30D20, 41A05.
Resumo:
Aims : Our aim was to investigate the proportional representation of people of South Asian origin in cardiovascular outcome trials of glucose-lowering drugs or strategies in Type 2 diabetes, noting that these are among the most significant pieces of evidence used to formulate the guidelines on which clinical practice is largely based. Methods : We searched for cardiovascular outcome trials in Type 2 diabetes published before January 2015, and extracted data on the ethnicity of participants. These were compared against expected values for proportional representation of South Asian individuals, based on population data from the USA, from the UK, and globally. Results : Twelve studies met our inclusion criteria and, of these, eight presented a sufficiently detailed breakdown of participant ethnicity to permit numerical analysis. In general, people of South Asian origin were found to be under-represented in trials compared with UK and global expectations and over-represented compared with US expectations. Among the eight trials for which South Asian representation could be reliably estimated, seven under-represented this group relative to the 11.2% of the UK diabetes population estimated to be South Asian, with the representation in these trials ranging from 0.0% to 10.0%. Conclusions : Clinicians should exercise caution when generalizing the results of trials to their own practice, with regard to the ethnicity of individuals. Efforts should be made to improve reporting of ethnicity and improve diversity in trial recruitment, although we acknowledge that there are challenges that must be overcome to make this a reality.
Resumo:
Ely and Peski (2006) and Friedenberg and Meier (2010) provide examples when changing the type space behind a game, taking a "bigger" type space, induces changes of Bayesian Nash Equilibria, in other words, the Bayesian Nash Equilibrium is not invariant under type morphisms. In this paper we introduce the notion of strong type morphism. Strong type morphisms are stronger than ordinary and conditional type morphisms (Ely and Peski, 2006), and we show that Bayesian Nash Equilibria are not invariant under strong type morphisms either. We present our results in a very simple, finite setting, and conclude that there is no chance to get reasonable assumptions for Bayesian Nash Equilibria to be invariant under any kind of reasonable type morphisms.
Resumo:
Ordinary type spaces (Heifetz and Samet, 1998) are essential ingredients of incomplete information games. With ordinary type spaces one can grab the notions of beliefs, belief hierarchies and common prior etc. However, ordinary type spaces cannot handle the notions of finite belief hierarchy and unawareness among others. In this paper we consider a generalization of ordinary type spaces, and introduce the so called generalized type spaces which can grab all notions ordinary type spaces can and more, finite belief hierarchies and unawareness among others. We also demonstrate that the universal generalized type space exists.
Resumo:
This study investigated the proposition density, sentence and clause type usage and non-finite verbal usage in two college textbooks. The teaching implications are presented.
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). In the present work, we follow the method originally proposed by Van Vliet in LRT. The Hamiltonian in this approach is of the form: H = H°(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H° - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H°(E, B) , include the external fields without any limitation on strength. In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0 , t → ∞ , so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.
Resumo:
Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.
Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.
One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.
Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.
In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.
Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.
The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.
Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
La Formule SAE (Society of Automotive Engineers) est une compétition étudiante consistant en la conception et la fabrication d’une voiture de course monoplace. De nombreux événements sont organisés à chaque année au cours desquels plusieurs universités rivalisent entre elles lors d’épreuves dynamiques et statiques. Celles-ci comprennent l’évaluation de la conception, l’évaluation des coûts de fabrication, l’accélération de la voiture, etc. Avec plus de 500 universités participantes et des événements annuels sur tous les continents, il s’agit de la plus importante compétition d’ingénierie étudiante au monde. L’équipe ULaval Racing a participé pendant plus de 20 ans aux compétitions annuelles réservées aux voitures à combustion. Afin de s’adapter à l’électrification des transports et aux nouvelles compétitions destinées aux voitures électriques, l’équipe a conçu et fabriqué une chaîne de traction électrique haute performance destinée à leur voiture 2015. L’approche traditionnelle employée pour concevoir une motorisation électrique consiste à imposer les performances désirées. Ces critères comprennent l’inclinaison maximale que la voiture doit pouvoir gravir, l’autonomie désirée ainsi qu’un profil de vitesse en fonction du temps, ou tout simplement un cycle routier. Cette approche n’est malheureusement pas appropriée pour la conception d’une traction électrique pour une voiture de type Formule SAE. Ce véhicule n’étant pas destiné à la conduite urbaine ou à la conduite sur autoroute, les cycles routiers existants ne sont pas représentatifs des conditions d’opération du bolide à concevoir. Ainsi, la réalisation de ce projet a nécessité l’identification du cycle d’opération routier sur lequel le véhicule doit opérer. Il sert de point de départ à la conception de la chaîne de traction composée des moteurs, de la batterie ainsi que des onduleurs de tension. L’utilisation d’une méthode de dimensionnement du système basée sur un algorithme d’optimisation génétique, suivie d’une optimisation locale couplée à une analyse par éléments-finis a permis l’obtention d’une solution optimale pour les circuits de type Formule SAE. La chaîne de traction conçue a été fabriquée et intégrée dans un prototype de voiture de l’équipe ULaval Racing lors de la saison 2015 afin de participer à diverses compétitions de voitures électriques.
Resumo:
Suivant l’entrée en vigueur de la Loi sur la représentation des ressources (LRR), le nouveau cadre de référence ressources intermédiaires (RI) et de type familial (RTF) élaboré par le ministère de la Santé et des Services sociaux encadre les changements de pratiques professionnelles. Sachant qu’un tel changement peut entraîner certaines résistances et même un échec, une revue des facteurs favorisant une implantation a été développée, l’objectif étant de dresser un portrait de la situation quant à la planification réalisée dans chacun des établissements. Ainsi, un questionnaire a été envoyé à tous les gestionnaires responsables de l’application du nouveau cadre de référence RI-RTF. Les résultats montrent notamment des lacunes quant à la prévision des incitatifs motivationnels, au développement des objectifs et des indicateurs nécessaires pour suivre l’implantation et favoriser la motivation. Il en ressort aussi que le cadre RI-RTF s’intègre bien à la culture et aux valeurs des établissements.
Resumo:
We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their projected entangled pair state representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.