900 resultados para REGRESSION-MODELS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62J12, 62K15, 91B42, 62H99.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 68T50,62H30,62J05.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The solution of a TU cooperative game can be a distribution of the value of the grand coalition, i.e. it can be a distribution of the payo (utility) all the players together achieve. In a regression model, the evaluation of the explanatory variables can be a distribution of the overall t, i.e. the t of the model every regressor variable is involved. Furthermore, we can take regression models as TU cooperative games where the explanatory (regressor) variables are the players. In this paper we introduce the class of regression games, characterize it and apply the Shapley value to evaluating the explanatory variables in regression models. In order to support our approach we consider Young (1985)'s axiomatization of the Shapley value, and conclude that the Shapley value is a reasonable tool to evaluate the explanatory variables of regression models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Highways are generally designed to serve a mixed traffic flow that consists of passenger cars, trucks, buses, recreational vehicles, etc. The fact that the impacts of these different vehicle types are not uniform creates problems in highway operations and safety. A common approach to reducing the impacts of truck traffic on freeways has been to restrict trucks to certain lane(s) to minimize the interaction between trucks and other vehicles and to compensate for their differences in operational characteristics. ^ The performance of different truck lane restriction alternatives differs under different traffic and geometric conditions. Thus, a good estimate of the operational performance of different truck lane restriction alternatives under prevailing conditions is needed to help make informed decisions on truck lane restriction alternatives. This study develops operational performance models that can be applied to help identify the most operationally efficient truck lane restriction alternative on a freeway under prevailing conditions. The operational performance measures examined in this study include average speed, throughput, speed difference, and lane changes. Prevailing conditions include number of lanes, interchange density, free-flow speeds, volumes, truck percentages, and ramp volumes. ^ Recognizing the difficulty of collecting sufficient data for an empirical modeling procedure that involves a high number of variables, the simulation approach was used to estimate the performance values for various truck lane restriction alternatives under various scenarios. Both the CORSIM and VISSIM simulation models were examined for their ability to model truck lane restrictions. Due to a major problem found in the CORSIM model for truck lane modeling, the VISSIM model was adopted as the simulator for this study. ^ The VISSIM model was calibrated mainly to replicate the capacity given in the 2000 Highway Capacity Manual (HCM) for various free-flow speeds under the ideal basic freeway section conditions. Non-linear regression models for average speed, throughput, average number of lane changes, and speed difference between the lane groups were developed. Based on the performance models developed, a simple decision procedure was recommended to select the desired truck lane restriction alternative for prevailing conditions. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Annual average daily traffic (AADT) is important information for many transportation planning, design, operation, and maintenance activities, as well as for the allocation of highway funds. Many studies have attempted AADT estimation using factor approach, regression analysis, time series, and artificial neural networks. However, these methods are unable to account for spatially variable influence of independent variables on the dependent variable even though it is well known that to many transportation problems, including AADT estimation, spatial context is important. ^ In this study, applications of geographically weighted regression (GWR) methods to estimating AADT were investigated. The GWR based methods considered the influence of correlations among the variables over space and the spatially non-stationarity of the variables. A GWR model allows different relationships between the dependent and independent variables to exist at different points in space. In other words, model parameters vary from location to location and the locally linear regression parameters at a point are affected more by observations near that point than observations further away. ^ The study area was Broward County, Florida. Broward County lies on the Atlantic coast between Palm Beach and Miami-Dade counties. In this study, a total of 67 variables were considered as potential AADT predictors, and six variables (lanes, speed, regional accessibility, direct access, density of roadway length, and density of seasonal household) were selected to develop the models. ^ To investigate the predictive powers of various AADT predictors over the space, the statistics including local r-square, local parameter estimates, and local errors were examined and mapped. The local variations in relationships among parameters were investigated, measured, and mapped to assess the usefulness of GWR methods. ^ The results indicated that the GWR models were able to better explain the variation in the data and to predict AADT with smaller errors than the ordinary linear regression models for the same dataset. Additionally, GWR was able to model the spatial non-stationarity in the data, i.e., the spatially varying relationship between AADT and predictors, which cannot be modeled in ordinary linear regression. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent 2  = 0.97, r jackknife 2  = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent 2  = 0.75, r jackknife 2  = 0.46), WTP (r apparent 2  = 0.75, r jackknife 2  = 0.49), and WTOC (r apparent 2  = 0.79, r jackknife 2  = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Classical regression analysis can be used to model time series. However, the assumption that model parameters are constant over time is not necessarily adapted to the data. In phytoplankton ecology, the relevance of time-varying parameter values has been shown using a dynamic linear regression model (DLRM). DLRMs, belonging to the class of Bayesian dynamic models, assume the existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after each observation. The aim of this paper was to show how DLRM results could be used to explain variation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dinophysis cf. acuminata, determined in Antifer harbour (French coast of the English Channel), along with physical and chemical covariates (e.g. wind velocity, nutrient concentrations). A single model was built using 1989 and 1990 data, and then applied separately to each year. Equivalent static regression models were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. acuminata concentration variability was explained by the configuration of the sampling site, the wind regime and tide residual flow. Moreover, the relationships of these factors with the concentration of the microalga varied with time, a fact that could not be detected with static regression. Application of dynamic models to phytoplankton time series, especially in a monitoring context, is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study analyzes the impact of individual characteristics as well as occupation and industry on male wage inequality in nine European countries. Unlike previous studies, we consider regression models for five inequality measures and employ the recentered influence function regression method proposed by Firpo et al. (2009) to test directly the influence of covariates on inequality. We conclude that there is heterogeneity in the effects of covariates on inequality across countries and throughout wage distribution. Heterogeneity among countries is more evident in education and experience whereas occupation and industry characteristics as well as holding a supervisory position reveal more similar effects. Our results are compatible with the skill biased technological change, rapid rise in the integration of trade and financial markets as well as explanations related to the increase of the remunerative package of top executives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, new classes of models for multivariate linear regression defined by finite mixtures of seemingly unrelated contaminated normal regression models and seemingly unrelated contaminated normal cluster-weighted models are illustrated. The main difference between such families is that the covariates are treated as fixed in the former class of models and as random in the latter. Thus, in cluster-weighted models the assignment of the data points to the unknown groups of observations depends also by the covariates. These classes provide an extension to mixture-based regression analysis for modelling multivariate and correlated responses in the presence of mild outliers that allows to specify a different vector of regressors for the prediction of each response. Expectation-conditional maximisation algorithms for the calculation of the maximum likelihood estimate of the model parameters have been derived. As the number of free parameters incresases quadratically with the number of responses and the covariates, analyses based on the proposed models can become unfeasible in practical applications. These problems have been overcome by introducing constraints on the elements of the covariance matrices according to an approach based on the eigen-decomposition of the covariance matrices. The performances of the new models have been studied by simulations and using real datasets in comparison with other models. In order to gain additional flexibility, mixtures of seemingly unrelated contaminated normal regressions models have also been specified so as to allow mixing proportions to be expressed as functions of concomitant covariates. An illustration of the new models with concomitant variables and a study on housing tension in the municipalities of the Emilia-Romagna region based on different types of multivariate linear regression models have been performed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, we investigate the role of applied physics in epidemiological surveillance through the application of mathematical models, network science and machine learning. The spread of a communicable disease depends on many biological, social, and health factors. The large masses of data available make it possible, on the one hand, to monitor the evolution and spread of pathogenic organisms; on the other hand, to study the behavior of people, their opinions and habits. Presented here are three lines of research in which an attempt was made to solve real epidemiological problems through data analysis and the use of statistical and mathematical models. In Chapter 1, we applied language-inspired Deep Learning models to transform influenza protein sequences into vectors encoding their information content. We then attempted to reconstruct the antigenic properties of different viral strains using regression models and to identify the mutations responsible for vaccine escape. In Chapter 2, we constructed a compartmental model to describe the spread of a bacterium within a hospital ward. The model was informed and validated on time series of clinical measurements, and a sensitivity analysis was used to assess the impact of different control measures. Finally (Chapter 3) we reconstructed the network of retweets among COVID-19 themed Twitter users in the early months of the SARS-CoV-2 pandemic. By means of community detection algorithms and centrality measures, we characterized users’ attention shifts in the network, showing that scientific communities, initially the most retweeted, lost influence over time to national political communities. In the Conclusion, we highlighted the importance of the work done in light of the main contemporary challenges for epidemiological surveillance. In particular, we present reflections on the importance of nowcasting and forecasting, the relationship between data and scientific research, and the need to unite the different scales of epidemiological surveillance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines the spatial pattern of ill-defined causes of death across Brazilian regions, and its relationship with the evolution of completeness of the deaths registry and changes in the mortality age profile. We make use of the Brazilian Health Informatics Department mortality database and population censuses from 1980 to 2010. We applied demographic methods to evaluate the quality of mortality data for 137 small areas and correct for under-registration of death counts when necessary. The second part of the analysis uses linear regression models to investigate the relationship between, on the one hand, changes in death counts coverage and age profile of mortality, and on the other, changes in the reporting of ill-defined causes of death. The completeness of death counts coverage increases from about 80% in 1980-1991 to over 95% in 2000-2010 at the same time the percentage of ill-defined causes of deaths reduced about 53% in the country. The analysis suggests that the government's efforts to improve data quality are proving successful, and they will allow for a better understanding of the dynamics of health and the mortality transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigate factors associated with the onset of diabetes in women aged more than 49 years. Cross-sectional, population-based study using self-reports with 622 women. The dependent variable was the age of occurrence of diabetes using the life table method. Cox multiple regression models were adjusted to analyse the onset of diabetes according to predictor variables. Sociodemographic, clinical and behavioural factors were evaluated. Of the 622 women interviewed, 22.7% had diabetes. The mean age at onset was 56 years. The factors associated with the age of occurrence of diabetes were self-rated health (very good, good) (coefficient=-0.792; SE of the coefficient=0.215; p=0.0001), more than two individuals living in the household (coefficient=0.656, SE of the coefficient=0.223; p=0.003), and body mass index (BMI) (kg/m(2)) at 20-30 years of age (coefficient= 0.056, SE of the coefficient=0.023; p=0.014). Self-rated health considered good or very good was associated with a higher rate of survival without diabetes. Sharing a home with two or more other people and a weight increase at 20-30 years of age was associated with the onset of type 2 diabetes.