945 resultados para RECEPTOR INVERSE AGONIST


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two widely coexpressed isoforms of beta-arrestin (termed beta arrestin 1 and 2) are highly similar in amino acid sequence. The beta-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of beta-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the beta-arrestins (beta arr1-KO and beta arr2-KO) or both (beta arr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the beta(2)-adrenergic receptor (beta(2)-AR) and the angiotensin II type 1A receptor (AT(1A)-R). Both beta arr1-KO and beta arr2-KO cells showed similar impairment in agonist-stimulated beta(2)-AR and AT(1A)-R desensitization, when compared with their WT control cells, and the beta arr1/2-KO cells were even further impaired. Sequestration of the beta(2)-AR in the beta arr2-KO cells was compromised significantly (87% reduction), whereas in the beta arr1-KO cells it was not. Agonist-stimulated internalization of the AT(1A)-R was only slightly reduced in the beta arr1-KO but was unaffected in the beta arr2-KO cells. In the beta arr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two beta-arrestins to sequester the beta(2)-AR revealed beta-arrestin 2 to be 100-fold more potent than beta-arrestin 1. Down-regulation of the beta(2)-AR was also prevented in the beta arr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two beta-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several G-protein coupled receptors, such as the beta1-adrenergic receptor (beta1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein-protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the beta1-AR either as a glutathione S-transferase fusion protein in biochemical "pull-down" assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the beta1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the beta1-AR but not to that of the beta2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of beta1-ARs in HEK293 cells while having no effect on beta2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in beta1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic overexpression (40- to 100-fold) of the wild-type human beta2-adrenergic receptor in the hearts of mice leads to a marked increase in cardiac contractility, which is apparently due to the low level of spontaneous (i.e., agonist-independent) activity inherent in the receptor. Here we report that transgenic mice expressing a mutated constitutively active form of the receptor (CAM) show no such phenotype, owing to its modest expression (3-fold above endogenous cardiac beta-adrenergic receptor levels). Surprisingly, treatment of the animals with a variety of beta-adrenergic receptor ligands leads to a 50-fold increase in CAM beta2-adrenergic receptor expression, by stabilizing the CAM beta2-adrenergic receptor protein. Receptor up-regulation leads in turn to marked increases in adenylate cyclase activity, atrial tension determined in vitro, and indices of cardiac contractility determined in vivo. These results illustrate a novel mechanism for regulating physiological responses, i.e., ligand-induced stabilization of a constitutively active but inherently unstable protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate and desensitize agonist-occupied GPCRs. GRK2-mediated receptor phosphorylation is preceded by the agonist-dependent membrane association of this enzyme. Previous in vitro studies with purified proteins have suggested that this translocation may be mediated by the recruitment of GRK2 to the plasma membrane by its interaction with the free betagamma subunits of heterotrimeric G proteins (G betagamma). Here we demonstrate that this mechanism operates in intact cells and that specificity is imparted by the selective interaction of discrete pools of G betagamma with receptors and GRKs. Treatment of Cos-7 cells transiently overexpressing GRK2 with a beta-receptor agonist promotes a 3-fold increase in plasma membrane-associated GRK2. This translocation of GRK2 is inhibited by the carboxyl terminus of GRK2, a known G betagamma sequestrant. Furthermore, in cells overexpressing both GRK2 and G beta1 gamma2, activation of lysophosphatidic acid receptors leads to the rapid and transient formation of a GRK/G betagamma complex. That G betagamma specificity exists at the level of the GPCR and the GRK is indicated by the observation that a GRK2/G betagamma complex is formed after agonist occupancy of the lysophosphatidic acid and beta-adrenergic but not thrombin receptors. In contrast to GRK2, GRK3 forms a G betagamma complex after stimulation of all three GPCRs. This G betagamma binding specificity of the GRKs is also reflected at the level of the purified proteins. Thus the GRK2 carboxyl terminus binds G beta1 and G beta2 but not G beta3, while the GRK3 fusion protein binds all three G beta isoforms. This study provides a direct demonstration of a role for G betagamma in mediating the agonist-stimulated translocation of GRK2 and GRK3 in an intact cellular system and demonstrates isoform specificity in the interaction of these components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase 1 (beta ARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the beta ARK1 gene in mice by homologous recombination. No homozygote beta ARK1-/- embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, beta ARK1-/- embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the "thin myocardium syndrome" observed upon gene inactivation of several transcription factors (RXR alpha, N-myc, TEF-1, WT-1). Lethality in beta ARK1-/- embryos is likely due to heart failure as they exhibit a > 70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in beta ARK1-/- embryos demonstrate that beta ARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guanine nucleotide-binding regulatory protein (G protein)-coupled receptor kinases (GRKs) constitute a family of serine/threonine kinases that play a major role in the agonist-induced phosphorylation and desensitization of G-protein-coupled receptors. Herein we describe the generation of monoclonal antibodies (mAbs) that specifically react with GRK2 and GRK3 or with GRK4, GRK5, and GRK6. They are used in several different receptor systems to identify the kinases that are responsible for receptor phosphorylation and desensitization. The ability of these reagents to inhibit GRK- mediated receptor phosphorylation is demonstrated in permeabilized 293 cells that overexpress individual GRKs and the type 1A angiotensin II receptor. We also use this approach to identify the endogenous GRKs that are responsible for the agonist-induced phosphorylation of epitope-tagged beta2- adrenergic receptors (beta2ARs) overexpressed in rabbit ventricular myocytes that are infected with a recombinant adenovirus. In these myocytes, anti-GRK2/3 mAbs inhibit isoproterenol-induced receptor phosphorylation by 77%, while GRK4-6-specific mAbs have no effect. Consistent with the operation of a betaAR kinase-mediated mechanism, GRK2 is identified by immunoblot analysis as well as in a functional assay as the predominant GRK expressed in these cells. Microinjection of GRK2/3-specific mAbs into chicken sensory neurons, which have been shown to express a GRK3-like protein, abolishes desensitization of the alpha2AR-mediated calcium current inhibition. The intracellular inhibition of endogenous GRKs by mAbs represents a novel approach to the study of receptor specificities among GRKs that should be widely applicable to many G-protein-coupled receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorylation of GTP-binding-regulatory (G)-protein-coupled receptors by specific G-protein-coupled receptor kinases (GRKs) is a major mechanism responsible for agonist-mediated desensitization of signal transduction processes. However, to date, studies of the specificity of these enzymes have been hampered by the difficulty of preparing the purified and reconstituted receptor preparations required as substrates. Here we describe an approach that obviates this problem by utilizing highly purified membrane preparations from Sf9 and 293 cells overexpressing G-protein-coupled receptors. We use this technique to demonstrate specificity of several GRKs with respect to both receptor substrates and the enhancing effects of G-protein beta gamma subunits on phosphorylation. Enriched membrane preparations of the beta 2- and alpha 2-C2-adrenergic receptors (ARs, where alpha 2-C2-AR refers to the AR whose gene is located on human chromosome 2) prepared by sucrose density gradient centrifugation from Sf9 or 293 cells contain the receptor at 100-300 pmol/mg of protein and serve as efficient substrates for agonist-dependent phosphorylation by beta-AR kinase 1 (GRK2), beta-AR kinase 2 (GRK3), or GRK5. Stoichiometries of agonist-mediated phosphorylation of the receptors by GRK2 (beta-AR kinase 1), in the absence and presence of G beta gamma, are 1 and 3 mol/mol, respectively. The rate of phosphorylation of the membrane receptors is 3 times faster than that of purified and reconstituted receptors. While phosphorylation of the beta 2-AR by GRK2, -3, and -5 is similar, the activity of GRK2 and -3 is enhanced by G beta gamma whereas that of GRK5 is not. In contrast, whereas GRK2 and -3 efficiently phosphorylate alpha 2-C2-AR, GRK5 is quite weak. The availability of a simple direct phosphorylation assay applicable to any cloned G-protein-coupled receptor should greatly facilitate elucidation of the mechanisms of regulation of these receptors by the expanding family of GRKs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta 2-adrenergic receptor (beta 2AR) can be constitutively activated by mutations in the third intracellular loop. Whereas the wild-type receptor exists predominantly in an inactive conformation (R) in the absence of agonist, the mutant receptor appears to spontaneously adopt an active conformation (R*). We now demonstrate that not only is the mutant beta 2AR constitutively active, it is also constitutively desensitized and down-regulated. To assess whether the mutant receptor can constitutively engage a known element of the cellular desensitization machinery, the receptor was purified and reconstituted into phospholipid vesicles. These preparations retained the essential properties of the constitutively active mutant receptor: agonist-independent activity [to stimulate guanine nucleotide-binding protein (Gs)-GTPase] and agonist-specific increase in binding affinity. Moreover, the purified mutant receptor, in the absence of agonist, was phosphorylated by recombinant beta AR-specific kinase (beta ARK) in a fashion comparable to the agonist-occupied wild-type receptor. Thus, the conformation of the mutated receptor is equivalent to the active conformation (R*), which stimulates Gs protein and is identical to the beta ARK substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physiological significance of multiple G-protein-coupled receptor subtypes, such as the beta-adrenergic receptors (beta ARs), remains obscure, since in many cases several subtypes activate the same effector and utilize the same physiological agonists. We inspected the deduced amino acid sequences of the beta AR subtypes for variations in the determinants for agonist regulation as a potential basis for subtype differentiation. Whereas the beta 2AR has a C terminus containing 11 serine and threonine residues representing potential sites for beta AR kinase phosphorylation, which mediates rapid agonist-promoted desensitization, only 3 serines are present in the comparable region of the beta 3AR, and they are in a nonfavorable context. The beta 3AR also lacks sequence homology in regions which are important for agonist-mediated sequestration and down-regulation of the beta 2AR, although such determinants are less well defined. We therefore tested the idea that the agonist-induced regulatory properties of the two receptors might differ by expressing both subtypes in CHW cells and exposing them to the agonist isoproterenol. The beta 3AR did not display short-term agonist-promoted functional desensitization or sequestration, or long-term down-regulation. To assign a structural basis for these subtype-specific differences in agonist regulation, we constructed a chimeric beta 3/beta 2AR which comprised the beta 3AR up to proline-365 of the cytoplasmic tail and the C terminus of the beta 2AR. When cells expressing this chimeric beta 3/beta 2AR were exposed to isoproterenol, functional desensitization was observed. Whole-cell phosphorylation studies showed that the beta 2AR displayed agonist-dependent phosphorylation, but no such phosphorylation could be demonstrated with the beta 3AR, even when beta AR kinase was overexpressed. In contrast, the chimeric beta 3/beta 2AR did display agonist-dependent phosphorylation, consistent with its functional desensitization. In addition to conferring functional desensitization and phosphorylation to the beta 3AR, the C-terminal tail of the beta 2AR also conferred agonist-promoted sequestration and long-term receptor down-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha 1B-adrenergic receptor (alpha 1B-ADR) is a member of the G-protein-coupled family of transmembrane receptors. When transfected into Rat-1 and NIH 3T3 fibroblasts, this receptor induces focus formation in an agonist-dependent manner. Focus-derived, transformed fibroblasts exhibit high levels of functional alpha 1B-ADR expression, demonstrate a catecholamine-induced enhancement in the rate of cellular proliferation, and are tumorigenic when injected into nude mice. Induction of neoplastic transformation by the alpha 1B-ADR, therefore, identifies this normal cellular gene as a protooncogene. Mutational alteration of this receptor can lead to activation of this protooncogene, resulting in an enhanced ability of agonist to induce focus formation with a decreased latency and quantitative increase in transformed foci. In contrast to cells expressing the wild-type alpha 1B-ADR, focus formation in "oncomutant"-expressing cell lines appears constitutively activated with the generation of foci in unstimulated cells. Further, these cell lines exhibit near-maximal rates of proliferation even in the absence of catecholamine supplementation. They also demonstrate an enhanced ability for tumor generation in nude mice with a decreased period of latency compared with cells expressing the wild-type receptor. Thus, the alpha 1B-ADR gene can, when overexpressed and activated, function as an oncogene inducing neoplastic transformation. Mutational alteration of this receptor gene can result in the activation of this protooncogene, enhancing its oncogenic potential. These findings suggest that analogous spontaneously occurring mutations in this class of receptor proteins could play a key role in the induction or progression of neoplastic transformation and atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homologous (agonist-specific) desensitization of beta-adrenergic receptors (beta ARs) is accompanied by and appears to require phosphorylation of the receptors. We have recently described a novel protein kinase, beta AR kinase, which phosphorylates beta ARs in vitro in an agonist-dependent manner. This kinase is inhibited by two classes of compounds, polyanions and synthetic peptides derived from the beta 2-adrenergic receptor (beta 2AR). In this report we describe the effects of these inhibitors on the process of homologous desensitization induced by the beta-adrenergic agonist isoproterenol. Permeabilization of human epidermoid carcinoma A431 cells with digitonin was used to permit access of the charged inhibitors to the cytosol; this procedure did not interfere with the pattern of isoproterenol-induced homologous desensitization of beta 2AR-stimulated adenylyl cyclase. Inhibitors of beta AR kinase markedly inhibited homologous desensitization of beta 2ARs in the permeabilized cells. Inhibition of desensitization by heparin, the most potent of the polyanion inhibitors of beta AR kinase, occurred over the same concentration range (5-50 nM) as inhibition of purified beta AR kinase assessed in a reconstituted system. Inhibition of desensitization by heparin was accompanied by a marked reduction of receptor phosphorylation in the permeabilized cells. Whereas inhibitors of beta AR kinase inhibited homologous desensitization, inhibitors of protein kinase C and of cyclic-nucleotide-dependent protein kinases were ineffective. These data establish that phosphorylation of beta ARs by beta AR kinase is an essential step in homologous desensitization of the receptors. They further suggest a potential therapeutic value of inhibitors of beta AR kinase in inhibiting agonist-induced desensitization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta 1- and beta 2-adrenergic receptors are two structurally related, but pharmacologically distinguishable, receptor subtypes, both of which activate adenylyl cyclase in a catecholamine-dependent manner through the guanine nucleotide-binding regulatory protein Gs. The receptors are approximately 50% identical in amino acid sequence and each is characterized by the presence of seven putative transmembrane domains. To elucidate the structural basis for the pharmacological distinctions between these two receptor subtypes, we constructed a series of chimeric beta 1/beta 2-adrenergic receptor genes and expressed them by injection of RNA into Xenopus laevis oocytes. The pharmacological properties of the expressed chimeric receptor proteins were assessed by radioligand binding and adenylyl cyclase assays utilizing subtype-selective agonists and antagonists. Our data indicate that transmembrane region IV is largely responsible for determining beta 1 vs. beta 2 properties with respect to agonist binding (relative affinities for epinephrine and norepinephrine). Transmembrane regions VI and VII play an important role in determining binding of beta 1 vs. beta 2 selective antagonists. However, a number of the other transmembrane regions also contribute, to a lesser extent, to the determination of beta-adrenergic receptor subtype specificity for agonists and antagonists. Thus, several of the membrane-spanning regions appear to be involved in the determination of receptor subtype specificity, presumably by formation of a ligand-binding pocket, with determinants for agonist and antagonist binding being distinguishable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase is an enzyme, possibly analogous to rhodopsin kinase, that multiply phosphorylates the beta-adrenergic receptor only when it is occupied by stimulatory agonists. Since this kinase may play an important role in mediating the process of homologous, or agonist-specific, desensitization, we investigated the functional consequences of receptor phosphorylation by the kinase and possible analogies with the mechanism of action of rhodopsin kinase. Pure hamster lung beta 2-adrenergic receptor, reconstituted in phospholipid vesicles, was assessed for its ability to mediate agonist-promoted stimulation of the GTPase activity of coreconstituted stimulatory guanine nucleotide-binding regulatory protein. When the receptor was phosphorylated by partially (approximately 350-fold) purified preparations of beta-adrenergic receptor kinase, as much as 80% inactivation of its functional activity was observed. However, the use of more highly purified enzyme preparations led to a dramatic decrease in the ability of phosphorylation to inactivate the receptor such that pure enzyme preparations (approximately 20,000-fold purified) caused only minimal (approximately 1off/- 7%) inactivation. Addition of pure retinal arrestin (48-kDa protein or S antigen), which is involved in enhancing the inactivating effect of rhodopsin phosphorylation by rhodopsin kinase, led to partial restoration of the functional effect of beta-adrenergic receptor kinase-promoted phosphorylation (41 +/- 3% inactivation). These results suggest the possibility that a protein analogous to retinal arrestin may exist in other tissues and function in concert with beta-adrenergic receptor kinase to regulate the activity of adenylate cyclase-coupled receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prolonged exposure of cells or tissues to drugs or hormones such as catecholamines leads to a state of refractoriness to further stimulation by that agent, known as homologous desensitization. In the case of the beta-adrenergic receptor coupled to adenylate cyclase, this process has been shown to be intimately associated with the sequestration of the receptors from the cell surface through a cAMP-independent process. Recently, we have shown that homologous desensitization in the frog erythrocyte model system is also associated with increased phosphorylation of the beta-adrenergic receptor. We now provide evidence that the phosphorylation state of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase, subcellular translocation, and recycling to the cell surface during the process of agonist-induced homologous desensitization. Moreover, we show that the receptor phosphorylation is reversed by a phosphatase specifically associated with the sequestered subcellular compartment. At 23 degrees C, the time courses of beta-adrenergic receptor phosphorylation, sequestration, and adenylate cyclase desensitization are identical, occurring without a lag, exhibiting a t1/2 of 30 min, and reaching a maximum at approximately 3 hr. Upon cell lysis, the sequestered beta-adrenergic receptors can be partially recovered in a light membrane vesicle fraction that is separable from the plasma membranes by differential centrifugation. The increased beta-adrenergic receptor phosphorylation is apparently reversed in the sequestered vesicle fraction as the sequestered receptors exhibit a phosphate/receptor stoichiometry that is similar to that observed under basal conditions. High levels of a beta-adrenergic receptor phosphatase activity appear to be associated with the sequestered vesicle membranes. The functional activity of the phosphorylated beta-adrenergic receptor was examined by reconstituting purified receptor with its biochemical effector the guanine nucleotide regulatory protein (Ns) in phospholipid vesicles and assessing the receptor-stimulated GTPase activity of Ns. Compared to controls, phosphorylated beta-adrenergic receptors, purified from desensitized cells, were less efficacious in activating the Ns GTPase activity. These results suggest that phosphorylation of the beta-adrenergic receptor leads to its functional uncoupling and physical translocation away from the cell surface into a sequestered membrane domain. In the sequestered compartment, the phosphorylation is reversed thus enabling the receptor to recycle back to the cell surface and recouple with adenylate cyclase.