992 resultados para RECEPTOR COMPLEXES
Resumo:
We have shown Galanin(GAL) and Neuropeptide Y Y1(NPYY1) interactions at behavioural, cellular and receptor levels through GALR2/NPYY1R heterodimers in the amygdala. The aim of this work was to analyze GAL/NPYY1R interactions in the Dentate Gyrus(DG) of the Hippocampus, using autoradiographic, in situ hybridization and in situ proximity ligation assay(PLA). Rats(n=6) were sacrificed 15 minutes or 5 hours after icv injections of GAL(3nmol) and DG sections were incubated with NPYY1R agonist [I125]-[Leu31,Pro34]PYY(25 pM) or NPYY1R-33PdATP specific probe, for autoradiography and in situ hybridization respectively. Autoradiograms were analyzed using NIH image analysis system and Student’s unpaired t-test was used. For PLA, DG sections were incubated with anti-GALR2 Rabbit(1:100) and anti-NPYY1R Goat(1:200). PLA signals were detected with PLA PLUS or MINUS probes for rabbit or goat/mouse antibodies. PLA signals were visualized by using a confocal microscope Leica TCS-SL confocal microscope(Leica). We observed that GAL significant increased the NPYY1R agonist [I125]-[Leu31,Pro34]PYY binding in the DG by 20% (p<0,05) and the NPYY1R mRNA expression in the granular layer of DG by 31% (p<0,001). Moreover, PLA-positive red clusters were found specifically in the polymorphic layer and subgranular zone of the DG. No PLA clusters were observed neither in the molecular layer of the DG nor in the corpus callosum, an area that seems to lack of GALR2 receptor. These results demonstrate a novel mechanism of interaction between GAL and NPY1R in the DG at receptor level, probably involving the formation of GALR2/NPYY1R heteroreceptor complexes. Study supported by Junta de Andalucia CVI6476.
Resumo:
Mood disorders, including depression and anxiety, are among the most prevalent mental illnesses with high socioeconomic impact. Although the underlying mechanisms have not yet been clearly defined in the last decade the importance of the role of neuropeptides, including Galanin (GAL), and/or their receptors in the treatment of stress-related mood disorders is becoming increasingly apparent. GAL is involved in mood regulation, including depression-related and anxiety-like behaviors. Activation of GALR1 and GALR3 receptors results in a depression like behavior while stimulation of GALR2 receptor leads to anti-depressant-like effects. Moreover, GAL modulates 5-HT1A receptors (5-HT1AR), a key receptor in depression at autoreceptor and postsynaptic level in the brain. This interaction can in part be due to the existence of GALR1-5-HT1AR heteroreceptor complexes in discrete brain regions [1]. Not only GAL but also the N-terminal fragments like GAL(1-15) are active in the Central Nervous System [2, 3]. Recently, we described that GAL(1-15) induces strong depression-related and anxiogenic-like effects in rats, and these effects were significantly stronger than the ones induced by GAL [4]. The GALR1-GALR2 heteroreceptor complexes in the dorsal hippocampus and especially in the dorsal raphe (DR), areas rich in GAL(1-15) binding sites [5] were involved in these effects [4, 6] and demonstrated also in cellular models. In the present study, we have analyzed the ability of GAL(1-15) to modulate 5-HT1AR located at postjunctional sites and at the soma-dendritic level in rats. We have analyzed the effect of GAL(1-15) on the 5-HT1AR-mediated response in a behavioral test of depression and the involvement of the GALR2 in these effects. GAL(1-15) enhanced the antidepressant effects induced by the 5-HT1AR agonist 8-OH-DPAT in the forced swimming test [7]. These effects were stronger than the ones induced by GAL. The mechanism of this action involved interactions at the receptor level in the plasma membrane with changes also at the transcriptional level. Thus, GAL(1-15) affected the binding characteristics as well as the mRNA level of 5-HT1AR in the dorsal hippocampus and DR. GALR2 was involved in these effects, since the specific GALR2 antagonist M871 blocked GAL(1-15) mediated actions at the behavioral and receptor level [7]. Furthermore, the results on the proximity ligation assay (PLA) in this work suggest the existence of GALR1-GALR2-5-HT1AR heteroreceptor complexes since positive PLA were obtained for both GALR1-5-HT1AR and GALR2-5-HT1AR complexes in the DR and hippocampus. Moreover the studies on RN33B cells, where GALR1, GALR2 and 5-HT1AR exist [4], also showed PLA-positive clusters indicating the existence of GALR1-5-HT1AR and GALR2-5-HT1AR complexes in these cells [7]. In conclusion, our results indicate that GAL(1–15) enhances the antidepressant effects induced by the 5-HT1AR agonist 8-OH-DPAT probably acting on GALR1-GALR2-5-HT1AR heteroreceptor located at postjunctional sites and at the soma-dendritic level. The development of new drugs specifically targeting these heteroreceptor complexes may offer a novel strategy for treatment of depression. This work has been supported by Junta de Andalucia CVI646 1. Borroto-Escuela, D.O., et al., Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochem Biophys Res Commun, 2010. 393(4): p. 767-72. 2. Hedlund, P.B. and K. Fuxe, Galanin and 5-HT1A receptor interactions as an integrative mechanism in 5-HT neurotransmission in the brain. Ann N Y Acad Sci, 1996. 780: p. 193-212. 3. Diaz-Cabiale, Z., et al., Neurochemical modulation of central cardiovascular control: the integrative role of galanin. EXS, 2010. 102: p. 113-31. 4. Millon, C., et al., A role for galanin N-terminal fragment (1-15) in anxiety- and depression-related behaviors in rats. Int J Neuropsychopharmacol, 2015. 18(3). 5. Hedlund, P.B., N. Yanaihara, and K. Fuxe, Evidence for specific N-terminal galanin fragment binding sites in the rat brain. Eur J Pharmacol, 1992. 224(2-3): p. 203-5. 6. Borroto-Escuela, D.O., et al., Preferential activation by galanin 1-15 fragment of the GalR1 protomer of a GalR1-GalR2 heteroreceptor complex. Biochem Biophys Res Commun, 2014. 452(3): p. 347-53. 7. Millon, C., et al., Galanin (1-15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Struct Funct, 2016.
Resumo:
The Rab family of proteins are low molecular weight GTPases that have the ability to switch between GTP- (active) and GDP- (inactive) bound form, and in that sense act as molecular switches. Through distinct localization on various vesicles and organelles and by cycling through GTP/GDP bound forms, Rabs are able to recruit and activate numerous effector proteins, both spatially and temporally, and hence behave as key regulators of trafficking in both endocytic and biosynhtetic pathways. The Rab5 protein has been shown to regulate transport from plasma membrane to the early endosome as well as activate signaling pathways from the early endosome. This dissertation focused on understanding Rab5 activation via endocytosis of receptor tyrosine kinases (RTKs). First, tyrosine kinase activity of RTKs was linked to endosome fusion by demonstrating that tyrosine kinase inhibitors block endosome fusion and activation of Rab5, and a constitutively active form of Rab5 is able to rescue endosome fusion. However, depending on how much ligand is available at the cell surface, the receptor-ligand complexes can be internalized via a number of distinct pathways. Similarly, Rab5 was activated in a ligand-dependent concentration dependent manner via clathrin- and caveolin-mediated pathways, as well as a pathway independent of both. However, overexpression Rabex-5, a nucleotide exchange factor for Rab5, is able to rescue activation even when all of the pathways of EGF-receptor internalization were blocked. Next, the three naturally occurring splice variants of Rabex-5 selectively activated Rab5. Lastly, Rabex-5 inhibits differentiation of 3T3-L1 and PC12 cells through 1) degradation of signaling endosome via Rab5-dependent fusion with the early endosome, 2) and inhibition of signaling cascade via ubiquitination of Ras through the ZnF domain at the N-terminus of Rabex-5. In conclusion, these data shed light on complexity of the endosomal trafficking system where tyrosine kinase activity of the receptor is able to affect endosome fusion; how different endocytic pathways affect activation of one of the key regulators of early endocytic events; and how selective activation of Rab5 via Rabex-5 can control adipogenesis and neurogenesis.
Resumo:
The calcitonin gene-related peptide (CGRP) family of G protein- coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in aGαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMPdependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.
Resumo:
P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.
Resumo:
Hereditary angioedema (HAE) with C1 inhibitor deficiency manifests as recurrent episodes of edema involving the skin, upper respiratory tract and gastrointestinal tract. It can be lethal due to asphyxia. The aim here was to evaluate the response to therapy for these attacks using icatibant, an inhibitor of the bradykinin receptor, which was recently introduced into Brazil. Prospective experimental single-cohort study on the efficacy and safety of icatibant for HAE patients. Patients with a confirmed HAE diagnosis were enrolled according to symptoms and regardless of the time since onset of the attack. Icatibant was administered in accordance with the protocol that has been approved in Brazil. Symptom severity was assessed continuously and adverse events were monitored. 24 attacks in 20 HAE patients were treated (female/male 19:1; 19-55 years; median 29 years of age). The symptoms were: subcutaneous edema (22/24); abdominal pain (15/24) and upper airway obstruction (10/24). The time taken until onset of relief was: 5-10 minutes (5/24; 20.8%); 10-20 (5/24; 20.8%); 20-30 (8/24; 33.4%); 30-60 (5/24; 20.8%); and 2 hours (1/24; 4.3%). The time taken for complete resolution of symptoms ranged from 4.3 to 33.4 hours. Adverse effects were only reported at injection sites. Mild to moderate erythema and/or feelings of burning were reported by 15/24 patients, itching by 3 and no adverse effects in 6. HAE type I patients who received icatibant responded promptly; most achieved improved symptom severity within 30 minutes. Local adverse events occurred in 75% of the patients.
Resumo:
Dipyrone (metamizole) is an analgesic pro-drug used to control moderate pain. It is metabolized in two major bioactive metabolites: 4-methylaminoantipyrine (4-MAA) and 4-aminoantipyrine (4-AA). The aim of this study was to investigate the participation of peripheral CB1 and CB2 cannabinoid receptors activation in the anti-hyperalgesic effect of dipyrone, 4-MAA or 4-AA. PGE2 (100ng/50µL/paw) was locally administered in the hindpaw of male Wistar rats, and the mechanical nociceptive threshold was quantified by electronic von Frey test, before and 3h after its injection. Dipyrone, 4-MAA or 4-AA was administered 30min before the von Frey test. The selective CB1 receptor antagonist AM251, CB2 receptor antagonist AM630, cGMP inhibitor ODQ or KATP channel blocker glibenclamide were administered 30min before dipyrone, 4-MAA or 4-AA. The antisense-ODN against CB1 receptor expression was intrathecally administered once a day during four consecutive days. PGE2-induced mechanical hyperalgesia was inhibited by dipyrone, 4-MAA, and 4-AA in a dose-response manner. AM251 or ODN anti-sense against neuronal CB1 receptor, but not AM630, reversed the anti-hyperalgesic effect mediated by 4-AA, but not by dipyrone or 4-MAA. On the other hand, the anti-hyperalgesic effect of dipyrone or 4-MAA was reversed by glibenclamide or ODQ. These results suggest that the activation of neuronal CB1, but not CB2 receptor, in peripheral tissue is involved in the anti-hyperalgesic effect of 4-aminoantipyrine. In addition, 4-methylaminoantipyrine mediates the anti-hyperalgesic effect by cGMP activation and KATP opening.
Resumo:
We report on the shape resonance spectra of phenol-water clusters, as obtained from elastic electron scattering calculations. Our results, along with virtual orbital analysis, indicate that the well-known indirect mechanism for hydrogen elimination in the gas phase is significantly impacted on by microsolvation, due to the competition between vibronic couplings on the solute and solvent molecules. This fact suggests how relevant the solvation effects could be for the electron-driven damage of biomolecules and the biomass delignification [E. M. de Oliveira et al., Phys. Rev. A 86, 020701(R) (2012)]. We also discuss microsolvation signatures in the differential cross sections that could help to identify the solvated complexes and access the composition of gaseous admixtures of these species.
Resumo:
Cardiac arrhythmias are one of the main causes of death worldwide. Several studies have shown that inflammation plays a key role in different cardiac diseases and Toll-like receptors (TLRs) seem to be involved in cardiac complications. In the present study, we investigated whether the activation of TLR4 induces cardiac electrical remodeling and arrhythmias, and the signaling pathway involved in these effects. Membrane potential was recorded in Wistar rat ventricle. Ca(2+) transients, as well as the L-type Ca(2+) current (ICaL) and the transient outward K(+) current (Ito), were recorded in isolated myocytes after 24 h exposure to the TLR4 agonist, lipopolysaccharide (LPS, 1 μg/ml). TLR4 stimulation in vitro promoted a cardiac electrical remodeling that leads to action potential prolongation associated with arrhythmic events, such as delayed afterdepolarization and triggered activity. After 24 h LPS incubation, Ito amplitude, as well as Kv4.3 and KChIP2 mRNA levels were reduced. The Ito decrease by LPS was prevented by inhibition of interferon regulatory factor 3 (IRF3), but not by inhibition of interleukin-1 receptor-associated kinase 4 (IRAK4) or nuclear factor kappa B (NF-κB). Extrasystolic activity was present in 25% of the cells, but apart from that, Ca(2+) transients and ICaL were not affected by LPS; however, Na(+)/Ca(2+) exchanger (NCX) activity was apparently increased. We conclude that TLR4 activation decreased Ito, which increased AP duration via a MyD88-independent, IRF3-dependent pathway. The longer action potential, associated with enhanced Ca(2+) efflux via NCX, could explain the presence of arrhythmias in the LPS group.
Resumo:
Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.
Resumo:
The androgen insensitivity syndrome (AIS) is described as a dysfunction of the androgen receptor (AR) in 46,XY individuals, which can be associated with mutations in the AR gene or can be due to unknown mechanisms. Different mutations in AIS generally cause variable phenotypes that range from a complete hormone resistance to a mild form usually associated with male infertility. The purpose of this study was to search for mutations in the AR gene in a fertile man with gynecomastia and to evaluate the influence of the mutation on the AR transactivation ability. Sequencing of the AR gene revealed the p.Pro695Ser mutation. It is located within the AR ligand-binding domain. Bioinformatics analysis indicated a deleterious role, which was verified after testing transactivation activity and N-/C-terminal (N/C) interaction by in vitro expression of a reporter gene and 2-hybrid assays. p.Pro695Ser showed low levels of both transactivation activity and N/C interaction at low dihydrotestosterone (DHT) conditions. As the ligand concentration increased, both transactivation activity and N/C interaction also increased and reached normal levels. Therefore, this study provides functional insights for the p.Pro695Ser mutation described here for the first time in a patient with mild AIS. The expression profile of p.Pro695Ser not only correlates to the patient's phenotype, but also suggests that a high-dose DHT therapy may overcome the functional deficit of the mutant AR.
Resumo:
Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.
Resumo:
The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.
Resumo:
The syndrome of resistance to thyroid hormone (RTH β) is an inherited disorder characterized by variable tissue hyposensitivity to 3,5,30-l-triiodothyronine (T3), with persistent elevation of free-circulating T3 (FT3) and free thyroxine (FT4) levels in association with nonsuppressed serum thyrotropin (TSH). Clinical presentation is variable and the molecular analysis of THRB gene provides a short cut diagnosis. Here, we describe 2 cases in which RTH β was suspected on the basis of laboratory findings. The diagnosis was confirmed by direct THRB sequencing that revealed 2 novel mutations: the heterozygous p.Ala317Ser in subject 1 and the heterozygous p.Arg438Pro in subject 2. Both mutations were shown to be deleterious by SIFT, PolyPhen, and Align GV-GD predictive methods.