934 resultados para REACTIVE OXYGEN SPECIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The substantial therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) and related cyclic nitroxides as antioxidants has stimulated innumerous studies of their reactions with reactive oxygen species. In comparison, reactions of nitroxides with nitric oxide-derived oxidants have been less frequently investigated. Nevertheless, this is relevant because tempol has also been shown to protect animals from injuries associated with inflammatory conditions, which are characterized by the increased production of nitric oxide and its derived oxidants. Here, we review recent studies addressing the mechanisms by which cyclic nitroxides attenuate the toxicity of nitric oxidederived oxidants. As an example, we present data showing that tempol protects mice from acetaminophen-induced hepatotoxicity and discuss the possible protection mechanism. In view of the summarized studies, it is proposed that nitroxides attenuate tissue injury under inflammatory conditions mainly because of their ability to react rapidly with nitrogen dioxide and carbonate radical. In the process the nitroxides are oxidized to the corresponding oxammonium cation, which, in turn, can be recycled back to the nitroxides by reacting with upstream species, such as peroxynitrite and hydrogen peroxide, or with cellular reductants. An auxiliary protection mechanism may be down-regulation of inducible nitric oxide synthase expression. The possible therapeutic implications of these mechanisms are addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A restrição calórica (RC) é uma das formas de intervenção nutricional mais amplamente discutida para se estender o tempo de vida em uma variedade de espécies, inclusive seres humanos. A RC parece reduzir a incidência de doenças relacionadas à idade. O mecanismo clássico que poderia explicar o efeito do consumo calórico no envelhecimento está relacionado à redução da gordura corporal e à sinalização da insulina, somada às espécies reativas de oxigênio produzidas durante a respiração que causam danos oxidativos ao DNA e ao RNA das células, promovendo o processo de envelhecimento e o aumento do risco de doenças. No entanto, o efeito da RC na longevidade em humanos ainda não está bem estabelecido e mais estudos são necessários para que os mecanismos celulares e moleculares responsáveis pelos efeitos terapêuticos da restrição calórica sejam elucidados. Além disso, é necessário diferenciar os efeitos benéficos da restrição calórica daqueles relacionados a hábitos alimentares saudáveis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidências têm demonstrado que distúrbios do metabolismo são comuns em células tumorais, levando ao aumento do estresse oxidativo. A elevação na produção de espécies reativas de oxigênio (EROs) associada à baixa atividade antioxidante tem sido relacionada a vários tipos de câncer. O selênio, micronutriente antioxidante, pode funcionar como um agente antimutagênico, prevenindo transformações malignas de células normais. Realizou-se um levantamento bibliográfico no período 2000 a 2009 mediante consulta à base de dados PubMed (National Library of Medicine´s Medline Biomedical Literature, USA), selecionando-se 39 artigos que avaliaram a relação entre câncer, estresse oxidativo e suplementação com selênio. O efeito protetor desse mineral é especialmente associado à sua presença na glutationa peroxidase e na tioredoxina redutase, enzimas protetoras do DNA e outros componentes celulares contra o dano oxidativo causado pelas EROs. Vários estudos têm demonstrado a expressão reduzida destas enzimas em diversos tipos de câncer, principalmente quando associados a uma baixa ingestão de selênio, que pode acentuar os danos causados. A suplementação de selênio parece ocasionar redução do risco de alguns tipos de câncer diminuindo o estresse oxidativo e o dano ao DNA. No entanto, mais estudos são necessários para esclarecer as doses de selênio adequadas para cada situação (sexo, localização geográfica e tipo de câncer)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. Methodology/Principal Findings: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. Conclusion/Relevance: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Reactive oxygen species have been implicated in the physiopathogenesis of hypertensive end-organ damage. This study investigated the impact of the C242T polymorphism of the p22-phox gene (CYBA) on left ventricular structure in Brazilian hypertensive subjects. Methods: We cross-sectionally evaluated 561 patients from 2 independent centers [Campinas (n = 441) and Vitoria (n = 120)] by clinical history, physical examination, anthropometry, analysis of metabolic and echocardiography parameters as well as p22-phox C242T polymorphism genotyping. In addition, NADPH-oxidase activity was quantified in peripheral mononuclear cells from a subgroup of Campinas sample. Results: Genotype frequencies in both samples were consistent with the Hardy-Weinberg equilibrium. Subjects with the T allele presented higher left ventricular mass/height(2.7) than those carrying the CC genotype in Campinas (76.8 +/- 1.6 vs 70.9 +/- 1.4 g/m(2.7); p = 0.009), and in Vitoria (45.6 +/- 1.9 vs 39.9 +/- 1.4 g/m(2.7); p = 0.023) samples. These results were confirmed by stepwise regression analyses adjusted for age, gender, blood pressure, metabolic variables and use of anti-hypertensive medications. In addition, increased NADPH-oxidase activity was detected in peripheral mononuclear cells from T allele carriers compared with CC genotype carriers (p = 0.03). Conclusions: The T allele of the p22-phox C242T polymorphism is associated with higher left ventricular mass/height(2.7) and increased NADPH-oxidase activity in Brazilian hypertensive patients. These data suggest that genetic variation within NADPH-oxidase components may modulate left ventricular remodeling in subjects with systemic hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and beta-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central role of reactive oxygen species (ROS) in osteoclast differentiation and in bone homeostasis prompted us to characterize the redox regulatory system of osteoclasts. In this report, we describe the expression and functional characterization of PAMM, a CXXC motif-containing peroxiredoxin 2-like protein expressed in bone marrow monocytes on stimulation with M-CSF and RANKL. Expression of wild-type (but not C to G mutants of the CXXC domain) PAMM in HEK293 cells results in an increased GSH/GSSG ratio, indicating a shift toward a more reduced environment. Expression of PAMM in RAW264.7 monocytes protected cells from hydrogen peroxide-induced oxidative stress, indicating that PAMM regulates cellular redox status. RANKL stimulation of RAW 264.7 cells caused a decrease in the GSH/GSSG ratio (reflecting a complementary increase in ROS). In addition, RANKL-induced osteoclast formation requires phosphorylation and translocation of NF-kappa B and c-Jun. In stably transfected RAW 264.7 cells, PAMM overexpression prevented the reduction of GSH/GSSG induced by RANKL. Concurrently, PAMM expression completely abolished RANKL-induced p100 NF-kappa B and c-Jun activation, as well as osteoclast formation. We conclude that PAMM is a redox regulatory protein that modulates osteoclast differentiation in vitro. PAMM expression may affect bone resorption in vivo and help to maintain bone mass. Antioxid. Redox Signal. 13, 27-37.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG), 25 mM D-glucose (high glucose, HG) or 25 mM L-glucose medium (osmotic control - OC), we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC). We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Severe outcomes have been described for both Plasmodium falciparum and P. vivax infections. The identification of sensitive and reliable markers of disease severity is fundamental to improving patient care. An intense pro-inflammatory response with oxidative stress and production of reactive oxygen species is present in malaria. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and antioxidant agents such as superoxide dismutase-1 (SOD-1) are likely candidate biomarkers for disease severity. Here we tested whether plasma levels of SOD-1 could serve as a biomarker of severe vivax malaria. Methodology/Principal Findings: Plasma samples were obtained from residents of the Brazilian Amazon with a high risk for P. vivax transmission. Malaria diagnosis was made by both microscopy and nested PCR. A total of 219 individuals were enrolled: non-infected volunteers (n = 90) and individuals with vivax malaria: asymptomatic (n = 60), mild (n = 50) and severe infection (n = 19). SOD-1 was directly associated with parasitaemia, plasma creatinine and alanine amino-transaminase levels, while TNF-alpha correlated only with the later enzyme. The predictive power of SOD-1 and TNF-alpha levels was compared. SOD-1 protein levels were more effective at predicting vivax malaria severity than TNF-alpha. For discrimination of mild infection, elevated SOD-1 levels showed greater sensitivity than TNF-alpha (76% vs. 30% respectively; p < 0.0001), with higher specificity (100% vs. 97%; p < 0.0001). In predicting severe vivax malaria, SOD-1 levels exhibited higher sensitivity than TNF-alpha (80% vs. 56%, respectively; p < 0.0001; likelihood ratio: 7.45 vs. 3.14; p, 0.0001). Neither SOD-1 nor TNF-alpha could discriminate P. vivax infections from those caused by P. falciparum. Conclusion: SOD-1 is a powerful predictor of disease severity in individuals with different clinical presentations of vivax malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acid (FA) may disturb the redox state of the cells not only by an increase in reactive oxygen species (ROS) generation but also due to a reduction in antioxidant enzyme activities. The effect of various FAs (palmitic, stearic, oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (EPAs)) on Jurkat and Raji cells, (human T and B leukaemic cell lines was investigated). The following measurements were carried out: FA composition of the cells, cell proliferation and activities of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). The protective effect of alpha-tocopherol on cell death was also investigated. Each cell line presented a specific FA composition. All the tested ENS reduced catalase activity. The toxic effect of FA was abolished by the pre-incubation with physiological concentrations of alpha-tocopherol. The findings support the proposition that the increase in oxidative stress induced by FA partially occurs due to a reduction in catalase activity. In spite of the decrease in the enzyme activity, catalase protein and mRNA levels were not changed, suggesting a post-translational regulation. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardial infarction (MI) has been associated with increases in reactive oxygen species (ROS). Exercise training (ET) has been shown to exert positive modulations on vascular function and the purpose of the present study was to investigate the effect of moderate ET on the aortic superoxide production index, NAD(P)H oxidase activity, superoxide dismutase activity and vasomotor response in MI rats. Aerobic ET was performed during 11 weeks. Myocardial infarction significantly diminished maximal exercise capacity, and increased vasoconstrictory response to norepinephrine, which was related to the increased activity of NAD(P)H oxidase and basal superoxide production. On the other hand, ET normalized the superoxide production mostly due to decreased NAD(P)H oxidase activity, although a minor SOD effect may also be present. These adaptations were paralleled by normalization in the vasoconstrictory response to norepinephrine. Thus, diminished ROS production seems to be an important mechanism by which ET mediates its beneficial vascular effects in the MI condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to mercury at nanomolar level affects cardiac function but its effects on vascular reactivity have yet to be investigated. Pressor responses to phenylephrine (PHE) were investigated in perfused rat tail arteries before and after treatment with 6 nM HgCl2 during 1 h,,in the presence (E+) and absence (E-) of endothelium, after L-NAME (10(-4) M), indomethacin (10(-5) M), enalaprilate (1 mu M), tempol (1 mu M) and deferoxamine (300 mu M) treatments. HgCl2 increased sensitivity (pD(2)) without modifying the maximum response (Em) to PHE, but the pD(2) increase was abolished after endothelial damage. L-NAME treatment increased pD(2) and Emax. However, in the presence of HgCl2, this increase was smaller, and it did not modify Emax. After indomethacin treatment, the increase of pD(2) induced by HgCl2 was maintained. Enalaprilate, tempol and deferoxamine reversed the increase of pD(2) evoked by HgCl2. HgCl2 increased the angiotensin converting enzyme (ACE) activity explaining the result obtained with enalaprilate. Results suggest that at nanomolar concentrations HgCl2 increase the vascular reactivity to PHE. This response is endothelium mediated and involves the reduction of NO bioavailability and the action of reactive oxygen species. The local ACE participates in mercury actions and depends on the angiotensin 11 generation. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although neurohumoral excitation is the hallmark of heart failure (HF), the mechanisms underlying this alteration are not entirely known. Abnormalities in several systems contribute to neurohumoral excitation in HF, including arterial and cardiopulmonary baroreceptors, central and peripheral chemoreceptors, cardiac chemoreceptors, and central nervous system abnormalities. Exercise intolerance is characteristic of chronic HF, and growing evidence strongly suggests that exercise limitation in patients with chronic HF is not due to elevated filling pressures or inadequate cardiac output during exercise, but instead due to skeletal myopathy. Several lines of evidence suggest that sympathetic excitation contributes to the skeletal myopathy of HF, since sympathetic activity mediates vasoconstriction at rest and during exercise likely restrains muscle blood flow, arteriolar dilatation, and capillary recruitment, leading to underperfused areas of working muscle, and areas of muscle ischemia, release of reactive oxygen species (ROS), and inflammation. Although controversial, either unmyelinated, metabolite-sensitive afferent fibers, and/or myelinated, mechanosensitive afferent fibers in skeletal muscle underlie the exaggerated sympathetic activity in HF. Exercise training has emerged as a unique non-pharmacological strategy for the treatment of HF. Regular exercise improves functional capacity and quality of life, and perhaps prognosis in chronic HF patients. Recent studies have provided convincing evidence that these benefits in chronic HF patients are mediated by significant reduction in central sympathetic outflow as a consequence of improvement in arterial and chemoreflex controls, and correction of central nervous system abnormalities, and increase in peripheral blood flow with reduction in cytokines and increase in mass muscle.