992 resultados para REACTION-MECHANISMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We identified English-language publications on hypersensitivity reactions to xenobiotics through the PubMed database, using the search terms drug and/or xenobiotic, hypersensitivity reaction, mechanism, and immune mediated. We analyzed articles pertaining to the mechanism and the role of T cells. Immune hypersensitivity reactions to drugs are mediated predominantly by IgE antibodies or T cells. The mechanism of IgE-mediated reactions is well investigated, but the mechanisms of T-cell-mediated drug hypersensitivity are not well understood. The literature describes 2 concepts: the hapten/prohapten concept and the concept of pharmacological interactions of drugs with immune receptors. In T-cell-mediated allergic drug reactions, the specificity of the T-cell receptor that is stimulated by the drug may often be directed to a cross-reactive major histocompatibility complex-peptide compound. Thus, previous contact with the causative drug is not obligatory, and an immune mechanism should be considered as the cause of hypersensitivity, even in reactions that occur on primary exposure. Indeed, immune-mediated reactions to xenobiotics in patients without prior exposure to the agent have been described recently for radiocontrast media and neuromuscular blocking agents. Thus, the "allergenic" potential of a drug under development should be evaluated not only by screening its haptenlike characteristics but also by assessing its direct immunostimulatory potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perceptual learning is a training induced improvement in performance. Mechanisms underlying the perceptual learning of depth discrimination in dynamic random dot stereograms were examined by assessing stereothresholds as a function of decorrelation. The inflection point of the decorrelation function was defined as the level of decorrelation corresponding to 1.4 times the threshold when decorrelation is 0%. In general, stereothresholds increased with increasing decorrelation. Following training, stereothresholds and standard errors of measurement decreased systematically for all tested decorrelation values. Post training decorrelation functions were reduced by a multiplicative constant (approximately 5), exhibiting changes in stereothresholds without changes in the inflection points. Disparity energy model simulations indicate that a post-training reduction in neuronal noise can sufficiently account for the perceptual learning effects. In two subjects, learning effects were retained over a period of six months, which may have application for training stereo deficient subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ore-forming and geoenviromental systems commonly involve coupled fluid flowand chemical reaction processes. The advanced numerical methods and computational modeling have become indispensable tools for simulating such processes in recent years. This enables many hitherto unsolvable geoscience problems to be addressed using numerical methods and computational modeling approaches. For example, computational modeling has been successfully used to solve ore-forming and mine site contamination/remediation problems, in which fluid flow and geochemical processes play important roles in the controlling dynamic mechanisms. The main purpose of this paper is to present a generalized overview of: (1) the various classes and models associated with fluid flow/chemically reacting systems in order to highlight possible opportunities and developments for the future; (2) some more general issues that need attention in the development of computational models and codes for simulating ore-forming and geoenviromental systems; (3) the related progresses achieved on the geochemical modeling over the past 50 years or so; (4) the general methodology for modeling of oreforming and geoenvironmental systems; and (5) the future development directions associated with modeling of ore-forming and geoenviromental systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key step in the conversion of solar energy into chemical energy by photosynthetic reaction centers (RCs) occurs at the level of the two quinones, QA and QB, where electron transfer couples to proton transfer. A great deal of our understanding of the mechanisms of these coupled reactions relies on the seminal work of Okamura et al. [Okamura, M. Y., Isaacson, R. A., & Feher, G. (1975) Proc. Natl. Acad. Sci. USA 88, 3491–3495], who were able to extract with detergents the firmly bound ubiquinone QA from the RC of Rhodobacter sphaeroides and reconstitute the site with extraneous quinones. Up to now a comparable protocol was lacking for the RC of Rhodopseudomonas viridis despite the fact that its QA site, which contains 2-methyl-3-nonaprenyl-1,4-naphthoquinone (menaquinone-9), has provided the best x-ray structure available. Fourier transform infrared difference spectroscopy, together with the use of isotopically labeled quinones, can probe the interaction of QA with the RC protein. We establish that a simple incubation procedure of isolated RCs of Rp. viridis with an excess of extraneous quinone allows the menaquinone-9 in the QA site to be almost quantitatively replaced either by vitamin K1, a close analogue of menaquinone-9, or by ubiquinone. To our knowledge, this is the first report of quinone exchange in bacterial photosynthesis. The Fourier transform infrared data on the quinone and semiquinone vibrations show a close similarity in the bonding interactions of vitamin K1 with the protein at the QA site of Rp. viridis and Rb. sphaeroides, whereas for ubiquinone these interactions are significantly different. The results are interpreted in terms of slightly inequivalent quinone–protein interactions by comparison with the crystallographic data available for the QA site of the two RCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

13C-selective NMR, combined with inhibitor perturbation experiments, shows that the Cɛ1—H proton of the catalytic histidine in resting α-lytic protease and subtilisin BPN′ resonates, when protonated, at 9.22 ppm and 9.18 ppm, respectively, which is outside the normal range for such protons and ≈0.6 to 0.8 ppm further downfield than previously reported. They also show that the previous α-lytic protease assignments [Markley, J. L., Neves, D. E., Westler, W. M., Ibanez, I. B., Porubcan, M. A. & Baillargeon, M. W. (1980) Front. Protein Chem. 10, 31–61] were to signals from inactive or denatured protein. Simulations of linewidth vs. pH demonstrate that the true signal is more difficult to detect than corresponding signals from inactive derivatives, owing to higher imidazole pKa values and larger chemical shift differences between protonated and neutral forms. A compilation and analysis of available NMR data indicates that the true Cɛ1—H signals from other serine proteases are similarly displaced downfield, with past assignments to more upfield signals probably in error. The downfield displacement of these proton resonances is shown to be consistent with an H-bond involving the histidine Cɛ1—H as donor, confirming the original hypothesis of Derewenda et al. [Derewenda, Z. S., Derewenda, U. & Kobos, P. M. (1994) J. Mol. Biol. 241, 83–93], which was based on an analysis of literature x-ray crystal structures of serine hydrolases. The invariability of this H-bond among enzymes containing Asp-His-Ser triads indicates functional importance. Here, we propose that it enables a reaction-driven imidazole ring flip mechanism, overcoming a major dilemma inherent in all previous mechanisms, namely how these enzymes catalyze both the formation and productive breakdown of tetrahedral intermediates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used capacitance measurements with a 1-microsecond voltage clamp technique to probe electrogenic ion-transporter interactions in giant excised membrane patches. The hydrophobic ion dipicrylamine was used to test model predictions for a simple charge-moving reaction. The voltage and frequency dependencies of the apparent dipicrylamine-induced capacitance, monitored by 1-mV sinusoidal perturbations, correspond to single charges moving across 76% of the membrane field at a rate of 9500 s-1 at 0 mV. For the cardiac Na,K pump, the combined presence of cytoplasmic ATP and sodium induces an increase of apparent membrane capacitance which requires the presence of extracellular sodium. The dependencies of capacitance changes on frequency, voltage, ATP, and sodium verify that phosphorylation enables a slow, 300- to 900-s-1, pump transition (the E1-E2 conformational change), which in turn enables fast, electrogenic, extracellular sodium binding reactions. For the GAT1 (gamma-aminobutyric acid,Na,Cl) cotransporter, expressed in Xenopus oocyte membrane, we find that chloride binding from the cytoplasmic side, and probably sodium binding from the extracellular side, results in a decrease of membrane capacitance monitored with 1- to 50-kHz perturbation frequencies. Evidently, ion binding by the GAT1 transporter suppresses an intrinsic fast charge movement which may originate from a mobility of charged residues of the transporter binding sites. The results demonstrate that fast capacitance measurements can provide new insight into electrogenic processes closely associated with ion binding by membrane transporters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation about the psychological experiences of the reproductive life cycle showed that in critical moments special reactions may happen. These reactions seem to be defensive in nature, are set in motion in order to promote some kind of emotional protection and are performed in two opposite directions: a) a decreasing of the contact with aggressive impulses and b) an increasing of the use of rationalization and denial of frustrating situations. Examples of those rearrangements were observed at samples of: 1) pregnant women in obstetric high-risk consultation, 2) infertile couples waiting for infertility consultations and 3) pregnant women waiting for amniocentesis results. These data seem to be in accordance with the classical psychological points of view: a) gestation should be considered as a period of protection, b) during pregnancy a “primary maternal preoccupation” (Winnicot, 1958) emerges leading to the mobilization of all resources available for pregnant women and c) along gestational development psychological changes show how flexible maternal functioning may become. What was not expected is that in the absence of pregnancy, infertile couples should behave very similarly to what it is observed when pregnancy is in danger or when medical problems about the mother’s or the baby’s health arise in the horizon. Due to its “freezing” consequences upon emotional development we propose that this kind of reaction will be designated as “stand-by reaction”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms for progressive fibrosis and exacerbation by steatosis in patients with chronic hepatitis C (HCV) are still unknown. We hypothesized that proliferative blockade in HCV-infected and steatotic hepatocytes results in the default activation of hepatic progenitor cells (HPC), capable of differentiating into both biliary and hepatocyte lineages, and that the resultant ductular reaction promotes portal fibrosis. To study this concept, 115 liver biopsy specimens from subjects with HCV were scored for steatosis, inflammation, and fibrosis. Biliary epithelium and HPC were decorated by cytokeratin 7 immunoperoxidase, and the replicative state of hepatocytes was assessed by p21 and Ki-67 immunohistochemistry. A ductular reaction at the portal interface was common. There was a highly significant correlation between the area of ductular reaction and fibrosis stage (r = 0.453, P < .0001), which remained independently associated after multivariate analysis. HPC numbers also correlated with fibrosis (r = 0.544, P < .0001) and the ductular area (r = 0.624, P < .0001). Moreover, steatosis correlated with greater HPC proliferation (r = 0.372, P = .0004) and ductular reaction (r = 0.374, P < .0001) but was not an obligate feature. Impaired hepatocyte replication by p21 expression was independently associated with HPC expansion (P = .002) and increased with the body mass index (P < .001) and lobular inflammation (P = .005). In conclusion, the strong correlation between portal fibrosis and a periportal ductular reaction with HPC expansion, the exacerbation by steatosis, and the associations with impaired hepatocyte replication suggest that an altered regeneration pathway drives the ductular reaction. We believe this triggers fibrosis at the portal tract interface. This may be a stereotyped response of importance in other chronic liver diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forty strains of Flavobacterium psychrophilum were tested for the production of siderophores using the universal Chrome Azurol S (CAS) assay. The majority of the strains (85%) were CAS positive (CAS+) and some (15%) were CAS negative (CAS−). The cryptic plasmid pCP1 was carried by all positive strains and was lacking from negative strains. While a weak catechol reaction was detectable in CAS+ culture supernatants, the CAS reaction was, to some extent, heat sensitive, questioning whether the positive reaction was caused only by siderophores. The ability to grow in vitro under iron-restricted conditions did not correlate with the CAS reactivity, as growth of both CAS+ and CAS− strains was similarly impaired under iron restriction induced by 2,2 dipyridyl. Suppressed growth under these conditions was restored by addition of FeCl3, haemoglobin and transferrin for both CAS+ and CAS− strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of melt stabilisers on the oxidative degradation of polyolefins (polypropylene, low density polyethylene) have been studied under a variety of processing conditions . The changes in the both chemical and physical properties of unstabilised polymers occurring during processing were found to be strongly dependent on the amount of oxygen present in the mixer. 2 ,6 ,3' ,5' -tetra-tert-butyl-4'-phenoxy-4-methylene-2, 5-cyclohexadiene-1- one (galvinoxyl), iodine, nitroxyl radicals and cupric stearate were found to be very efficient melt stabilisers particularly when processed in a restricted amount of air. The mechanisms of their melt stabilising action have been investigated and a common cyclical regenerative mechanism involving both chain-breaking electron acceptor (CB-A) and chain-breaking electron donor (CB-D) antioxidant activity was found to be involved in each case. 2,6,3',5'-tetra-tert-butyl-4'-hydroxy phenyl-4-rrethylene-2,5-cyclohexadiene- 1-one (hydrogalvinoxy1), 4-hydroxy, 2,2,6, 6-tetra methyl-N-hydroxy piperidine and hydrogen iodide were formed together with olefinic unsaturation in the substrates during the melt processing of the polymers containing galvinoxyl, 4-hydroxy, 2,2,6, 6-tetra methyl piperidine oxyl and iodine respectively. No bonding of the melt stabilisers to the polymers was found to occur. Cupric stearate was found to undergo a similar redox reaction during its action as a melt stabiliser with the formation of unsaturation in the polymer. Evidence for the above processes is presented. The behaviours of melt stabilisers in the subsequent thermal and photooxidation of polyolefins have also been studied. Galvinoxyl which is very effective under both mild and severe processing canditions has been found to be an effective antioxidant during thermal oxidation (oven ageing) and it is also moderately good. as a photo-stabiliser. Iodine and cupric stearate acted efficiently during melt stabilisation of polymers, however they were both ineffective as thermo-oxidative antioxidants and UV stabilisers. Although the melt stabilisation effectiveness of stable nitroxyl radicals (e.g. 4-hydroxy, 2,2,6,6-tetra methyl piperidineoxyl and Bis- (2,2,6 ,6-tetra methyl-4- piperidinyl-N-oxyl) sebacate) is not as high as that of galvinoxyl during processing particularly in excess of air, they have been found to be much more efficient as UV stabilisers for polyolefins. The reasons for this are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The methylation of cytosinc residues in DNA is thought to play an important role in the regulation of gene expression, with active genes generally being hypomethylated. With this in mind peptides were synthcsised to mimic the cytosine-5 methylation activity carried out by DNA mcthylase, which however, showed no ability to carry out this function. The imidazotetrazinoncs are a novel group of antitumour agents which have demonstrated good activity against a range of murinc tumours and human tumour xenografts, and hypomethylation of DNA has been implicated in the mechanism of action. Studies have been conducted on the mechanism by which such agents cause hypomethylation, using DNA methylase partially purified from murine L1210 leukaemia cells. Unmodified calf thymus DNA does not inhibit the transfer of methyl groups from SAM to M.lysodeikticus DNA by partially purified DNA methylase. However, if the calf thymus DNA is modified by alkylating agents such as imida-zotetrazinones or nitrosoureas, the treated DNA becomes an inhibitor of the methylation reaction. This has been correlated with the induction of DNA damage, such as single strand breaks, since X-ray treated DNA and deoxyribonuclease treatment produces a similar effect. The mechanism of inhibition by the drug treated or damaged DNA is thought to occur by binding of the enzyme to an increased concentration of non-substrate DNA, presumably by the occurrence of single strand breaks, since neither sonication nor treatment with the restriction enzyme Mspl caused an inhibition. Attempts were made to elucidate the strict structure activity relationship for antitumour activity observed amongst the imidazotctrazinones. The transfection of a murine colon adcnocarcinoma cell line (MAC 13) with DNA extracted from GM892 or Raji cells previously treated with either the methyl (temozolomide) or ethyl (ethazolastone) imidazotetrazinone was performed. X-irradiated DNA did not cause any suppression of cell growth, suggesting that it was not due to physical damage. Transfection of MAC 13 cells with DNA extracted from GM892 cells, was more effective at inhibiting growth than DNA from Raji cells. Temozolomide treated cellular DNA was a more potent growth inhibitor than that from ethazolastone treated cells. For both agents the growth inhibitory effect was most marked with DNA extracted 6h after drug addition, and after 24h no growth suppression was observed. This suggested that the growth inhibitory effect is due to a repairable lesion. .The methylation of M.lysodeikticus DNA by DNA methylase is inhibited potently and specifically by both hereto and homoribo and dcoxyri-bopolynucleotides containing guanine residues. The inhibitory effect is unaffected by chain length or sugar residue, but is abolished when the O-6 residue of guanine is substituted as in poly d(OGG)2o. Potent inhibition is also shown by polyinosinic and polyxanthylic acids but not by polyadenylic acid or by heteropolymers containing adcnine and thymine. These results suggest that the 6 position of the purine nucleus is important in binding of the DNA methylase to particular regions of the DNA and that the hydrogen bonding properties of this group are important in enzyme recognition. This was confirmed using synthetic oligonucleotides as substrates for DNA methylase. Enzymatic methylation of cytosine is completely suppressed, when O6 methylguanine replaces guanine in CG sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel reaction pathways for the hypervalent iodine-mediated oxidation of bioactive phenols containing extended conjugated π-systems are described. Oxidation of 4-hydroxystilbenes in methanol using a hypervalent iodine-based oxidant led to the formal 1,2-addition of methoxy groups across the central stilbene double bond. Treatment of the structurally related 4-hydroxyisoflavone with di(trifluoroacetoxy)iodobenzene leads to the surprising formation of 2,4′-dihydroxybenzil. Potential mechanisms for these new reaction pathways are discussed, and the X-ray crystal structure of 2,4′-dihydroxybenzil is presented. In contrast, oxidation of the corresponding 3-hydroxystilbenes and 3-hydroxyisoflavone led to conventional dienone oxidation products. The antitumour implications of these oxidation processes are briefly highlighted; the novel 4-substituted phenolic oxidation products were found to be inactive in terms of in vitro antitumour cellular activity, whereas the 3-substituted phenol products gave novel agents with potent and enhanced antitumour activity in the HCT 116 cancer cell line. © The Royal Society of Chemistry 2005.