969 resultados para Quantitative Trait Locus
Resumo:
A adoção da ação afirmativa denominada cotas nas universidades federais - reserva de vagas para estudantes que tenham cursado integralmente o ensino médio em escolas públicas - continua sendo polêmica, mesmo após a sanção da Lei nº.12.711 de 2012, o que torna oportuna a contribuição aos estudos a respeito da utilização desse sistema nas universidades públicas brasileiras. Este trabalho teve por objetivo estudar o desempenho acadêmico de alunos cotistas do Centro de Ciências Jurídicas e Econômicas e do Centro Tecnológico da Universidade Federal do Espírito Santo – UFES, no período de 2008 a 2013, considerando as duas entradas anuais nos referidos cursos. O presente estudo analisou o aproveitamento acadêmico dos alunos de 15 cursos de graduação ofertados pelos Centros nominados buscando saber em quais cursos e disciplinas existem diferenças significativas de desempenho, a partir do coeficiente de rendimento acadêmico (CRA) e da média final das disciplinas cursadas por alunos cotistas e não cotistas, visando a propor ações institucionais para a redução dessas diferenças. Na pesquisa, de caráter quantitativo, utilizou-se o método estatístico de análise de variância ANOVA. A partir das análises realizadas foi possível inferir a existência de diferenças de rendimento nos cursos de engenharia,principalmente em disciplinas de cálculo e álgebra. O curso de Direito, por sua vez, apresentou diferença significativa de desempenho, não obstante as médias não estarem abaixo do índice necessário para a aprovação. Quando a comparação é feita considerando o sexo, verificou-se no curso de Ciências Econômicas e Ciências da Computação uma disparidade significativa de rendimento em favor dos alunos do sexo feminino cotistas em detrimento dos não cotistas do mesmo sexo.
Resumo:
El Mal de Río Cuarto (MRC) es una enfermedad del maíz (Zea mays L.), endémica de ciertas zonas de la Argentina y constituye la patología más importante de este cultivo por la severidad de los daños y por la creciente difusión del área geográfica afectada. El empleo de la resistencia genética bajo un manejo integrado de la enfermedad, constituye la estrategia más económica y ambientalmente sustentable para lograr el incremento y la estabilidad en la producción de los cultivos de maíz, reduciendo el uso nocivo de agroquímicos. La reacción a la enfermedad MRC se encuentra influida por una fuerte interacción genotipo-ambiente que dificulta el mejoramiento genético. En los ensayos multiambientales la inconsistencia de la respuesta y la inestabilidad de los genotipos ensayados hace dificultoso llevar a cabo una buena selección basada en los síntomas de la enfermedad. Para contribuir a aumentar la eficacia de los métodos de mejoramiento es posible implementar programas en los que se incluyan herramientas biotecnológicas como los marcadores moleculares, que permiten reducir el efecto ambiental y contribuyen a soslayar, al menos en parte, los inconvenientes planteados por los efectos de la interacción genotipo-ambiente facilitando la identificación de los genotipos buscados. La selección fenotípica realizada convencionalmente, puede ser complementada con la selección asistida por marcadores (marker-assisted selection MAS) consistente en utilizar la información genética que brindan marcadores moleculares de ADN, tales como los SSR, asociados a loci o segmentos cromosómicos (quantitative trait loci QTL) que confieran resistencia a MRC. Si bien los resultados preliminares obtenidos por nuestro grupo de trabajo señalan la presencia de posibles QTLs e informan que la reacción frente a la enfermedad tiene una moderada heredabilidad y una substancial variación debida a la interacción genotipo-ambiente, es necesario confirmar los resultados relativos a los parámetros poblacionales y obtener una mejor delimitación de las regiones genómicas identificadas. Con la finalidad de aumentar la eficiencia de los programas de mejoramiento en el desarrollo de genotipos tolerantes mediante la selección asistida por marcadores utilizando una población de mapeo F2 con un fondo genético diferente y líneas endocriadas recombinantes evaluadas en ensayos multiambientales, se proponen los siguientes objetivos (i) estudiar la forma de herencia de la reacción frente a MRC, (ii) identificar nuevos QTLs asociados a este carácter y (iii) verificar la consistencia de los QTLs identificados previamente.
Resumo:
The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25), we had sufficient statistical power to detect the large majority (80%) of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4) (95% confidence interval [9.6×10(-5)-3.1×10(-4)]); accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10); odds ratio = 25.0 [9.9-60.6]); and results in a mean body mass index (BMI) increase of 5.8 kg.m(-2) [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.
Resumo:
Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Well-established examples of genetic epistasis between a pair of loci typically show characteristic patterns of phenotypic distributions in joint genotype tables. However, inferring epistasis given such data is difficult due to the lack of power in commonly used approaches, which decompose the epistatic patterns into main plus interaction effects followed by testing the interaction term. Testing additive-only or all terms may have more power, but they are sensitive to nonepistatic patterns. Alternatively, the epistatic patterns of interest can be enumerated and the best matching one is found by searching through the possibilities. Although this approach requires multiple testing correction over possible patterns, each pattern can be fitted with a regression model with just one degree of freedom and thus the overall power can still be high, if the number of possible patterns is limited. Here we compare the power of the linear decomposition and pattern search methods, by applying them to simulated data generated under several patterns of joint genotype effects with simple biological interpretations. Interaction-only tests are the least powerful; while pattern search approach is the most powerful if the range of possibilities is restricted, but still includes the true pattern.
Resumo:
To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.
Resumo:
Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 × 10(-8) to P = 4 × 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
Resumo:
Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ∼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smoking.
Resumo:
Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional 16,482 samples. We identified 20 variants associated with adult height (P < 5 x 10(-7), with 10 reaching P < 1 x 10(-10)). Combined, the 20 SNPs explain approximately 3% of height variation, with a approximately 5 cm difference between the 6.2% of people with 17 or fewer 'tall' alleles compared to the 5.5% with 27 or more 'tall' alleles. The loci we identified implicate genes in Hedgehog signaling (IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEU7) pathways, and provide new insights into human growth and developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.
Resumo:
To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
Resumo:
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Q(st)-F(st)) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2F(st)/(1 - F(st))G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2F(st)/(1 - F(st))] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Q(st)-F(st) comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions.
Resumo:
The basic functions of sleep are still unclear, however, recent advances in genomics and proteomics have begun to contribute to our understanding of both normal and pathological sleep. In this review, we focus primarily on normal sleep and wake that have been studied in model organisms such as mice. Mice have been especially valuable since many different inbred strains exist that differ in sleep-related traits, and genes can be altered by either mutagenesis or targeted approaches. Advances in QTL (Quantitative Trait Loci) analysis have also helped to identify important sleep related genes, and several other QTLs have been mapped as a first step toward finding the genes that underlie basic sleep traits. In addition to more traditional genetic approaches, the abundance of different mRNAs across sleep and wake can now be studied and compared in different brain regions much more thoroughly using microarray methods. Progress at the protein level has been more difficult, but a few studies have begun to investigate changes in proteins during sleep and wake, and we present some of our own preliminary data in this area. A knowledge of which genes and proteins control or respond to changes in sleep will not only help answer fundamental questions, but may also suggest novel drug targets for improving multiple aspects of sleep and wake.