992 resultados para QUANTUM-THEORY
Resumo:
Hydrogen bonds formed through the interaction between a high electronic density center (lone electron pairs, π or pseudo-π bonds) and proton donors cause important electronic and vibrational phenomena in many systems. However, it was demonstrated that proton donors interact with hydrides, such as alkali and alkaline earth metals (BeH2, MgH2, LiH and NaH), what yields a new type of interaction so-called dihydrogen bonds. The characterization of these interactions has been performed at light of the Quantum Theory of Atoms in Molecules (QTAIM), by which the electronic densities ρ are quantified and the intermolecular regions are characterized as closed-shell interactions through the analysis of the Laplacian field ∇2ρ.
Resumo:
Along the historical background of science, the hydrogen bond became widely known as the universal interaction, thus playing a key role in many molecular processes. Through the available theoretical approaches, many of these processes can be unveiled on the basis of the molecular parameters of the subject intermolecular system, such as the variation of bond length and mainly the frequency shift observed in the proton donor. Supported by the natural bond analysis (NBO) with the quantification of the hybridization contributions, the structural deformations and vibrational effects cited above are also attributed to the outcome of the intermolecular interaction strength, which consequently can be estimated by means of the quantum theory of atoms in molecules (QTAIM) as well as evaluated by the symmetry-adapted perturbation theory (SAPT). Moreover, to identify the preferential interaction sites for proton donors and acceptors, the molecular electrostatic potential (MEP) is useful in this regard.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
Using a finite-range density functional, we have investigated the energetics and structural features of mixed helium clusters. The possibility of doping the cluster with a molecule of sulfur hexafluoride is also considered. It is seen that the repulsion introduced by the impurity strongly modifies the properties of the smallest drops. Although only a qualitative comparison is possible, the gross features displayed by our calculations are in agreement with recent experimental findings.
Resumo:
We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed.
Resumo:
The enhancement in the production of even-Z nuclei observed in nuclear fission has also been observed in fragments produced from heavy ion collsions. Beams of 40Ar, 40Cl, and 40Ca at 25 MeV/nucleon were impinged on 58Fe and 58Ni targets. The resulting fragments were detected using the MSU 4pi detector array, which had additional silicon detectors for better isotopic resolution. Comparison of the ratios of yields for each element showed enhancement of even-Z fragment production. The enhancement was more pronounced for reactions with a greater difference in the N/Z of the compound system. However, this effect was less for systems that were more neutron rich. The average N/Z for fragments also displayed an odd-even effect with a lower average N/Z for the even-Z fragments. This is related to the greater availability of neutron-poor isotopes for even-Z nuclei
Resumo:
In genannter Schrift soll versucht werden, einen aus der Kantschen und Fichteschen Erkenntnistheorie erfolgenden allgemeinen Zusammenhang herzustellen zwischen dem kategorialen Denken hinsichtlich Denken und Anschauen und dem Problem von Raum und Zeit, wie es sich mit der Entwicklung der modernen Physik durch die Relativitäts- und Quantentheorie deutlich aufdrängt. Es wird gezeigt, dass F.W.J. Schelling grundlegende Lösungsansätze hierzu bereitstellt, welche auf dem Gebiet der Logik, der Epistomologie und Naturphilosophie in der Nachfolge von Kant, Fichte und Spinoza stattfinden, jedoch weit über seine Zeit hinausreichen. Diese Ansätze werden von Schelling selbst unter den Begriff einer „Identität der Identität und Differenz“ gesetzt. In der genannten Dissertation sollen Denkbewegungen dargestellt werden, die eine Anbindung der Schellingschen Naturphilosophie an die sich mit den genannten unterschiedlichen Theorien bzw. deren problematischer Vereinheitlichung beschäftigende Physik zu erreichen versuchen. Der formelle Aufbau der Arbeit gehorcht der inhaltlichen Struktur dieser Anbindungsbemühung, insofern unterstellt wird, dass diese rein nur aus einem dialektischen Denken (sowohl in der Erkenntnistheorie, als auch Naturphilosophie) heraus überhaupt erreicht werden kann. So werden sowohl die Tätigkeiten des Verstandes als die des Anschauens in ihrem Zusammenspiel, wie aber auch die Verstandes- und Anschauungstätigkeiten an sich selbst betrachtet, dialektisch vermittelt dargestellt, was innerhalb der formellen Deduktion der Kantschen Kategorien und der korrespondierenden Anschauungsformen selbst durchgeführt wird. Schellings Intention seines späteren Denkens, die philosophischen Probleme auf die Geschichtlichkeit, die Freiheit und den Erfahrungsbezug des Menschen zu beziehen, wird nicht als Gegenposition zu den frühen Ansätze der Logik und Transzendentalphilosophie gedeutet, sondern selbst als Endpunkt einer dialektischen Entwicklung des Schellingschen Denkens gefasst. Dies ergibt folgenden formellen Aufbau der Arbeit: Zunächst wird in einem einleitenden Abschnitt über die Aufgabe der Philosophie selbst und ihrer Darstellbarkeit im Zusammenhang mit der Hegel-Schelling-Kontroverse gearbeitet, um Schelling als adäquaten Bezugspunkt für unsere moderne Diskussion auf der methodischen und sprachlichen Ebene einzuführen. Im Hauptteil werden die wesentlichen Momente der für Schelling wichtigen Transzendentalphilosophie der Jahrhundertwende dargestellt, um diese dann an den späteren phänomenologisch-epistemologischen Ansätzen zu spiegeln. Von der theoretischen Seite kommend werden die Hauptmomente der praktischen Philosophie Schellings aufgezeigt, um dann den Menschen in einem dritten Schritt Symbol der Ununterschiedenheit von logischen und freien Tätigkeiten bzw. von Leib und Seele zu deuten. Diese Resultate bleiben zunächst einmal liegen, um in dem zweiten Hauptabschnitt auf grundlegende naturphilosophische Voraussetzungen und Resultate derjenigen Physik einzugehen, welche die prinzipiellen Verständnisschwierigkeiten der Physik des frühen 20. Jahrhundert in die heutige kosmologische und atomistische Diskussion mitbringt. Der dritte Hauptabschnitt stellt den Versuch dar, Schellings Naturphilosophie an symptomatische Anschauungen der Physik heranzuführen, um ihn als zeitgenössischen Kritiker einzuführen, wie aber auch als einen, der bestimmte moderne naturwissenschaftliche bzw. physikalische Resultate im Besonderen vorwegzunehmen vermochte. Die Einführung seiner Philosophie in aktuelle naturphilosophische Diskussion wird als unabdingbare Voraussetzung zu einem zukünftigen Verständnis des Natur, des Kosmos´ und des Menschen gefordert.
Resumo:
The electron localization function (ELF) has been proven so far a valuable tool to determine the location of electron pairs. Because of that, the ELF has been widely used to understand the nature of the chemical bonding and to discuss the mechanism of chemical reactions. Up to now, most applications of the ELF have been performed with monodeterminantal methods and only few attempts to calculate this function for correlated wave functions have been carried out. Here, a formulation of ELF valid for mono- and multiconfigurational wave functions is given and compared with previous recently reported approaches. The method described does not require the use of the homogeneous electron gas to define the ELF, at variance with the ELF definition given by Becke. The effect of the electron correlation in the ELF, introduced by means of configuration interaction with singles and doubles calculations, is discussed in the light of the results derived from a set of atomic and molecular systems
Resumo:
La tesis tracta diferents aspectes relacionats amb el càlcul de la semblança quàntica, així com la seva aplicació en la racionalització i predicció de l'activitat de fàrmacs. Es poden destacar dos progressos importants en el desenvolupament de noves metodologies que faciliten el càlcul de les mesures de semblança quàntica. En primer lloc, la descripció de les molècules mitjançant les funciones densitat aproximades PASA (Promolecular Atomic Shell Approximation) ha permès descriure amb suficient precisió la densitat electrònica dels sistemes moleculars analitzats, reduint substancialment el temps de càlcul de les mesures de semblança. En segon lloc, el desenvolupament de tècniques de superposició molecular específiques de les mesures de semblança quàntica ha permès resoldre el problema de l'alineament en l'espai dels compostos comparats. El perfeccionament d'aquests nous procediments i algoritmes matemàtics associats a les mesures de semblança molecular quàntica, ha estat essencial per poder progressar en diferents disciplines de la química computacional, sobretot les relacionades amb les anàlisis quantitatives entre les estructures moleculars i les seves activitats biològiques, conegudes amb les sigles angleses QSAR (Quantitative Structure-Activity Relationships). Precisament en l'àrea de les relacions estructura-activitat s'han presentat dues aproximacions fonamentades en la semblança molecular quàntica que s'originen a partir de dues representacions diferents de les molècules. La primera descripció considera la densitat electrònica global de les molècules i és important, entre altres, la disposició dels objectes comparats en l'espai i la seva conformació tridimensional. El resultat és una matriu de semblança amb les mesures de semblança de tots els parells de compostos que formen el conjunt estudiat. La segona descripció es fonamenta en la partició de la densitat global de les molècules en fragments. S'utilitzen mesures d'autosemblança per analitzar els requeriments bàsics d'una determinada activitat des del punt de vista de la semblança quàntica. El procés permet la detecció de les regions moleculars que són responsables d'una alta resposta biològica. Això permet obtenir un patró amb les regions actives que és d'evident interès per als propòsits del disseny de fàrmacs. En definitiva, s'ha comprovat que mitjançant la simulació i manipulació informàtica de les molècules en tres dimensions es pot obtenir una informació essencial en l'estudi de la interacció entre els fàrmacs i els seus receptors macromoleculars.
Resumo:
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A relativistic four-component study was performed for the XeF(2) molecule by using the Dirac-Coulomb (DC) Hamiltonian and the relativistic adapted Gaussian basis sets (RAGBSs). The comparison of bond lengths obtained showed that relativistic effects on this property are small (increase of only 0.01 angstrom) while the contribution of electron correlation, obtained at CCSD(T) or CCSD-T levels, is more important (increase of 0.05 angstrom). Electron correlation is also dominant over relativistic effects for dissociation energies. Moreover, the correlation-relativity interaction is shown to be negligible for these properties. The electron affinity, the first ionization potential and the double ionization potential are obtained by means of the Fock-space coupled cluster (FSCC) method, resulting in DC-CCSD-T values of 0.3 eV, 12.5 eV and 32.3 eV, respectively. Vibrational frequencies and some anharmonicity constants were also calculated under the four-component formalism by means of standard perturbation equations. All these molecular properties are, in general, ill satisfactory agreement with available experimental results. Finally, a partition in terms of charge-charge flux-dipole flux (CCFDF) contributions derived by means of the quantum theory of atoms in molecules (QTAIM) in non-relativistic QCISD(FC)/3-21G* calculations was carried out for XeF(2) and KrF(2). This analysis showed that the most remarkable difference between both molecules lies on the charge flux contribution to the asymmetric stretching mode, which is negligible in KrF(2) but important in XeF(2). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work is a study of coordination compounds by quantum theory of atoms in molecules (QTAIM), based on the topological analysis of the electron density of molecular systems, both theoretically and experimentally obtained. The coordination chemistry topics which were studied are the chelate effect, bent titanocene and chemical bond in coordination complexes. The chelate effect was investigated according to topological and thermodynamic parameters. The exchange of monodentate ligands on polydentate ligands from same transition metal increases the stability of the complex both from entropy and enthalpy contributions. In some cases, the latter had a higher contribution to the stability of the complex in comparison with entropy. This enthalpic contribution is explained according to topological analysis of the M-ligand bonds where polidentate complex had higher values of electron density of bond critical point, Laplacian of electron density of bond critical point and delocalization index (number of shared electrons between two atoms). In the second chapter, was studied bent titanocenes with bulky cyclopentadienyl derivative π-ligand. The topological study showed the presence of secondary interactions between the atoms of π-ligands or between atoms of π-ligand and -ligand. It was found that, in the case of titanocenes with small difference in point group symmetry and with bulky ligands, there was an nearly linear relationship between stability and delocalization index involving the ring carbon atoms (Cp) and the titanium. However, the titanocene stability is not only related to the interaction between Ti and C atoms of Cp ring, but secondary interactions also play important role on the stability of voluminous titanocenes. The third chapter deals with the chemical bond in coordination compounds by means of QTAIM. The quantum theory of atoms in molecules so far classifies bonds and chemical interactions in two categories: closed shell interaction (ionic bond, hydrogen bond, van der Waals interaction, etc) and shared interaction (covalent bond). Based on topological parameters such as electron density, Laplacian of electron density, delocalization index, among others, was classified the chemical bond in coordination compounds as an intermediate between closed shell and shared interactions