944 resultados para Q-Oscillator Algebra
Resumo:
243 p. : il.
Resumo:
186 p. : il.
Resumo:
The aim of this paper is to propose a new solution for the roommate problem with strict preferences. We introduce the solution of maximum irreversibility and consider almost stable matchings (Abraham et al. [2])and maximum stable matchings (Ta [30] [32]). We find that almost stable matchings are incompatible with the other two solutions. Hence, to solve the roommate problem we propose matchings that lie at the intersection of the maximum irreversible matchings and maximum stable matchings, which are called Q-stable matchings. These matchings are core consistent and we offer an effi cient algorithm for computing one of them. The outcome of the algorithm belongs to an absorbing set.
Resumo:
A 32.1 W laser-diode-stack pumped acoustic-optic Q-switched Nd:YVO4 slab laser with hybrid resonator at 1064 nm was demonstrated with the pumping power of 112 W and repetition rate of 40 kHz, the pulse duration was 32.47 ns. The slope efficiency and optical-to-optical efficiency were 37 and 28.7%, respectively. At the repetition rate of 20 kHz and pumping power of 90 W, the average output power and pulse duration were 20.4 W and 20.43 ns, respectively. With the pumping power of 112 W, the beam quality M-2 factors in CW operation were measured to be 1.3 in stable direction and 1.6 in unstable direction.
Resumo:
This thesis presents structural investigations of molecular ions and ionic clusters using vibrational predissociation spectroscopy. Experimentally, a pulsed beam of the mass-selected ion is crossed by a tunable infrared laser beam generated by a Nd:YAG pumped LiNbO_3 optical parametric oscillator. The resulting fragment ion is mass-analyzed and detected, with its intensity as a function of the laser wavelength being the "action" spectrum of the parent ion. In the case of SiH_7^+, we observed a vibrational band centered at 3866 cm^(-1) with clear P, Q, R branches, which is assigned as a perturbed H_2 stretch. The absence of a second H_2 band suggests that the ion forms a symmetric complex with a structure H_2•SiH_3^+•H_2 , in contrast to the species CH_7^+, which has the structure CH_5^+•H_2. The infrared spectra of NO_2^+(H_2O)_n clusters exhibit a marked change with cluster size, indicating that an intracluster reaction occurs with sufficient solvation. Specifically, in NO_2^+(H_2O)_n clusters where n≤3, H_2O binds to a nitronium ion core; but at n=4 the NO_2^+ reacts, transforming the cluster to a new structure of H_3O^+•(H_2O)_(n_2)•HNO_3. For protonated chlorine nitrate, we have observed two distinct isomers previously predicted by ab initio calculations: NO_2^+•(HOC1), the lowest energy isomer, and (ClO)(HO)NO^+, a covalently bonded isomer about 20 kcal/mol higher in energy. Both isomers decompose to NO_2^+ and HOCl upon photo-excitation. These results for HClONO_2^+ lend strong support to the involvement of an ionic mechanism in the reaction of ClONO_2 on polar stratospheric cloud surfaces, a critical step in the dramatic springtime depletion of ozone over Antarctica. Current research activities on halide-solvent clusters and metal-ligand complexes as well as technological improvements of the apparatus are also discussed.