999 resultados para Pseudo-Bayesian Design
Resumo:
A rapid spherical harmonic calculation method is used for the design of Nuclear Magnetic Resonance shim coils. The aim is to design each shim such that it generates a field described purely by a single spherical harmonic. By applying simulated annealing techniques, coil arrangements are produced through the optimal positioning of current-carrying circular arc conductors of rectangular cross-section. This involves minimizing the undesirable harmonies in relation to a target harmonic. The design method is flexible enough to be applied for the production of coil arrangements that generate fields consisting significantly of either zonal or tesseral harmonics. Results are presented for several coil designs which generate tesseral harmonics of degree one.
Resumo:
In this paper we propose a new framework for evaluating designs based on work domain analysis, the first phase of cognitive work analysis. We develop a rationale for a new approach to evaluation by describing the unique characteristics of complex systems and by showing that systems engineering techniques only partially accommodate these characteristics. We then present work domain analysis as a complementary framework for evaluation. We explain this technique by example by showing how the Australian Defence Force used work domain analysis to evaluate design proposals for a new system called Airborne Early Warning and Control. This case study also demonstrates that work domain analysis is a useful and feasible approach that complements standard techniques for evaluation and that promotes a central role for human factors professionals early in the system design and development process. Actual or potential applications of this research include the evaluation of designs for complex systems.
Resumo:
Ecological interface design (EID) is proving to be a promising approach to the design of interfaces for complex dynamic systems. Although the principles of EID and examples of its effective use are widely available, few readily available examples exist of how the individual displays that constitute an ecological interface are developed. This paper presents the semantic mapping process within EID in the context of prior theoretical work in this area. The semantic mapping process that was used in developing an ecological interface for the Pasteurizer II microworld is outlined, and the results of an evaluation of the ecological interface against a more conventional interface are briefly presented. Subjective reports indicate features of the ecological interface that made it particularly valuable for participants. Finally, we outline the steps of an analytic process for using EID. The findings presented here can be applied in the design of ecological interfaces or of configural displays for dynamic processes.
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
The present work describes the crystal structure, vibrational spectra, and theoretical calculations of ammonium salts of 3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate, (NH(4))(2)(C(11)N(4)O(3)) [(NH(4))(2)CV], also known as ammonium croconate violet. This compound crystallizes in triclinic P (1) over bar and contains two water molecules per unit formula. The crystal packing is stabilized by hydrogen bonds involving water molecules and ammonium cations, giving rise to a 3D polymeric arrangement. In this structure, a pi-stacking interaction is not observed, as the smaller centroid-centroid distance is 4.35 angstrom. Ab initio electronic structure calculations under periodic boundary conditions were performed to predict vibrational and electronic properties. The vibrational analysis was used to assist the assignments of the Raman and infrared bands. The solid structure was optimized and characterized as a minimum in the potential-energy surface. The stabilizing intermolecular hydrogen bonds in the crystal Structure were characterized by difference charge-density analysis. The analysis of the density of states of (NH(4))(2)CV gives an energy gap of 1.4 eV with a significant contribution of carbon and nitrogen 2p states for valence and conduction bands.
Resumo:
This paper addresses the investment decisions considering the presence of financial constraints of 373 large Brazilian firms from 1997 to 2004, using panel data. A Bayesian econometric model was used considering ridge regression for multicollinearity problems among the variables in the model. Prior distributions are assumed for the parameters, classifying the model into random or fixed effects. We used a Bayesian approach to estimate the parameters, considering normal and Student t distributions for the error and assumed that the initial values for the lagged dependent variable are not fixed, but generated by a random process. The recursive predictive density criterion was used for model comparisons. Twenty models were tested and the results indicated that multicollinearity does influence the value of the estimated parameters. Controlling for capital intensity, financial constraints are found to be more important for capital-intensive firms, probably due to their lower profitability indexes, higher fixed costs and higher degree of property diversification.
Resumo:
The efficient expression and purification of an interfacially active peptide (mLac21) was achieved by using bioprocess-centered molecular design (BMD), wherein key bioprocess considerations are addressed during the initial molecular biology work. The 21 amino acid mLac21 peptide sequence is derived from the lac repressor protein and is shown to have high affinity for the oil-water interface, causing a substantial reduction in interfacial tension following adsorption. The DNA coding for the peptide sequence was cloned into a modified pET-31(b) vector to permit the expression of mLac21 as a fusion to ketosteroid isomerase (KSI). Rational iterative molecular design, taking into account the need for a scaleable bioprocess flowsheet, led to a simple and efficient bioprocess yielding mLac21 at 86% purity following ion exchange chromatography (and >98% following chromatographic polishing). This case study demonstrates that it is possible to produce acceptably pure peptide for potential commodity applications using common scaleable bioprocess unit operations. Moreover, it is shown that BMD is a powerful strategy that can be deployed to reduce bioseparation complexity. (C) 2004 Wiley Periodicals, Inc.
Resumo:
This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this work we study the existence and uniqueness of pseudo-almost periodic solutions for a first-order abstract functional differential equation with a linear part dominated by a Hille-Yosida type operator with a non-dense domain. (C) 2009 Published by Elsevier Ltd
Resumo:
Understanding the interfacial interactions and structure is important to better design and application of organic-inorganic nanohybrids. This paper presents our recent molecular dynamic studies on organoclays and polymer nanocomposites, including the layering behavior of organoclays, structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays, and interfacial interactions and structure of polyurethane nanocomposites. The results demonstrate that the layering behaviors of organoclays are closely related to the chain length of quaternary alkyl ammoniums and cation exchangeable capacity of clays. In addition to typical layered structures such as monolayer, bilayer and pseudo-trilayer, a pseudo-quadrilayer structure was also observed in organoclays modified with dioctadecyldimethyl ammoniums (DODDMA). In such a structure, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer or even the next nearest layer. Moreover, the diffusion constants of nitrogen and methylene atoms increase with the temperature and methelene towards the tail groups. For polyurethane nanocomposite, the van der Waals interaction between apolar alkyl chains and soft segments of polyurethane predominates the interactions between organoclay and polyurethane. Different from most bulk polyurethane systems, there is no distinct phase-separated structure for the polyurethane.
Resumo:
In this work a new approach for designing planar gradient coils is outlined for the use in an existing MRI apparatus. A technique that allows for gradient field corrections inside the diameter-sensitive volume is deliberated. These corrections are brought about by making changes to the wire paths that constitute the coil windings, and hence, is called the path correction method. The existing well-known target held method is used to gauge the performance of a typical gradient coil. The gradient coil design methodology is demonstrated for planar openable gradient coils that can be inserted into an existing MRI apparatus. The path corrected gradient coil is compared to the coil obtained using the target field method. It is shown that using a wire path correction with optimized variables, winding patterns that can deliver high magnetic gradient field strengths and large imaging regions can be obtained.
Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64
Resumo:
Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective ""CORE-64"" trial (""Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors""). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.
Resumo:
The main aim of this study is to evaluate the capacity of human dental pulp stem cells (hDPSC), isolated from deciduous teeth, to reconstruct large-sized cranial bone defects in nonimmunosuppressed (NIS) rats. To our knowledge, these cells were not used before in similar experiments. We performed two symmetric full-thickness cranial defects (5 x 8 mm) on each parietal region of eight NIS rats. In six of them, the left side was supplied with collagen membrane only and the right side (RS) with collagen membrane and hDPSC. In two rats, the RS had collagen membrane only and nothing was added at the left side (controls). Cells were used after in vitro characterization as mesenchymal cells. Animals were euthanized at 7, 20, 30, 60, and 120 days postoperatively and cranial tissue samples were taken from the defects for histologic analysis. Analysis of the presence of human cells in the new bone was confirmed by molecular analysis. The hDPSC lineage was positive for the four mesenchymal cell markers tested and showed osteogenic, adipogenic, and myogenic in vitro differentiation. We observed bone formation 1 month after surgery in both sides, but a more mature bone was present in the RS. Human DNA was polymerase chain reaction-amplified only at the RS, indicating that this new bone had human cells. The us e of hDPSC in NIS rats did not cause any graft. rejection. Our findings suggest that hDPSC is an additional cell resource for correcting large cranial defects in rats and constitutes a promising model for reconstruction of human large cranial defects in craniofacial surgery.
Resumo:
Background: Despite significant advancements in psychopharmacology, treating major depressive disorder (MDD) is still a challenge considering the efficacy, tolerability, safety, and economical costs of most antidepressant drugs. One approach that has been increasingly investigated is modulation of cortical activity with tools of non-invasive brain stimulation - such as transcranial magnetic stimulation and transcranial direct current stimulation (tDCS). Due to its profile, tDCS seems to be a safe and affordable approach. Methods and design: The SELECT TDCS trial aims to compare sertraline vs. tDCS in a double-blinded, randomized, factorial trial enrolling 120 participants to be allocated to four groups to receive sertraline + tDCS, sertraline, tDCS or placebo. Eligibility criteria are moderate-to-severe unipolar depression (Hamilton Depression Rating Scale >17) not currently on sertraline treatment. Treatment will last 6 weeks and the primary outcome is depression change in the Montgomery-Asberg Depression Rating Score (MADRS). Potential biological markers that mediate response, such as BDNF serum levels, Val66Met BDNF polymorphism, and heart rate variability will also be examined. A neuropsychological battery with a focus on executive functioning will be administered. Discussion: With this design we will be able to investigate whether tDCS is more effective than placebo in a sample of patients free of antidepressants and in addition, we will be able to secondarily compare the effect sizes of sertraline vs. tDCS and also the comparison between tDCS and combination of tDCS and sertraline. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Various members of the bZip and bHLH-Zip families of eukaryotic transcription factors, including Jun, Fos, and Myc, have been identified as oncoproteins; mutation or deregulated expression of these proteins leads to certain types of cancer. These proteins can only bind to their cognate DNA enhancer sites following homodimerization, or heterodimerization with another family member, via their leucine zipper domain. Thus, a novel anticancer strategy would be to inhibit dimerization of these proteins, thereby blocking their DNA binding and transactivation functions. In this paper we show that it is possible to rationally design leucine zipper peptides that bind with high affinity to the leucine zipper dimerization domains of c-Jun and c-Fos, thus preventing the formation of functional c-Jun homodimers and c-Jun:c-Fos heterodimers; we refer to such peptides as superzippers (SZs). In vivo, c-Jun:SZ and c-Fos:SZ heterodimers should be nonfunctional as they lack one of the two basic domains that are essential for DNA binding. While the transport of a peptidic agent into cells often poses a severe obstacle to its therapeutic use, we show that a 46-residue leucine zipper peptide can be transported into HeLa cells by coupling it to a 17-residue carrier peptide from the Antennapedia homeodomain, thus paving the way for detailed studies of the therapeutic potential of superzipper peptides.